

Thursday 18th May 2023

To: Site Engineer, Lendlease
Tweed Valley Hospital Project

Environmental Engineer & Director

mob: office: (02) 66-215-123

fax: (02) 66-218-123 ABN: 82 106 758 123

Re: Surface Water Quality Monitoring Results and Report for the Tweed Valley Hospital Project
Reporting period: 15 March 2023 to 17 April 2023

1.0 INTRODUCTION

Ecoteam is engaged to undertake monthly and event-based surface water monitoring on behalf of Lendlease Building as part of the main works for the Tweed Valley Hospital Project. This report presents results from the 46th round of monthly sampling. This report satisfies the requirements of the SSD2 conditions. No controlled or uncontrolled releases from the sediment basins occurred during the reporting period.

2.0 PROJECT AIMS AND SAMPLING OBJECTIVES

The surface water monitoring objectives for the site are to detect changes during construction in receiving water quality resulting from the project. Stormwater discharges potentially contain increased sediment loads, nutrients, total and dissolved metals, hydrocarbons, or other contaminants such as pesticides. Baseline water quality data was performed on 19 and 26 November and 19 December 2018 to record water quality conditions under the existing land use prior to construction (Lendlease Building, 2019).

3.0 WEATHER CONDITIONS

Total rainfall in the period prior to sampling (15 March 2023 to 17 April 2023) was 60.8 mm with the highest 24-hour rainfall occurring on 30 March, being 21.8 mm (Kingscliff BOM Station 058137).

4.0 SAMPLING LOCATIONS

Samples were collected from four of the five monthly sampling Sites (001 – 003 and 005). Site 004 has been infilled and has been removed from ongoing sampling rounds. Control samples were also collected and analysed (013 – 015). Sample codes and corresponding sampling locations are shown in **Table 1** and **Figure 1**. Site photos taken on the day of sampling are included in **Appendix A**. During sampling, Site 002 was noted to be flowing South. Therefore, Site 002 will be assessed as an upstream sample site.

Table 1. Monthly sampling sites, control samples, sample codes, and applicable WQOs.

Sample Codes	Sampling Site Name	Short Name	WQOs
001	West Creek (Downstream)	WC	Estuarine
002	North West Creek (Variable)	NWC	Estuarine
003	East Creek (Upstream)	EC	Freshwater
004	Dam (Downstream)	Dam	Freshwater
005	Dam Drain (Downstream)	DD	Freshwater
013	Trip Blank	Trip	NA
014	Field Blank	Field	NA
015	Field Duplicate	Duplicate	NA

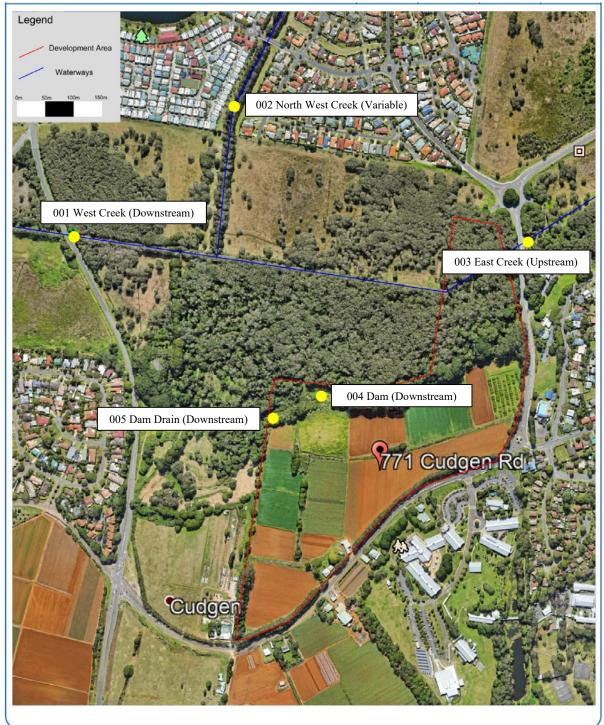


Figure 1. Map of monthly sampling sites (Source: Google Earth).

5.0 SAMPLING METHODOLOGY

Sampling was undertaken by on Tuesday 18 April 2023. The weather was overcast. In situ, physico-chemical measurements were collected using a AquaTROLL multi-parameter probe, and Turbidity was measured using a Turbimeter Plus turbidity meter. Oil and grease were visually assessed. The calibration certificate for the AquaTROLL is included in **Appendix B**. The Turbimeter Plus is calibrated before each sampling round. Water quality samples were collected at 300 mm below the surface where possible. Samples were collected from the bank using an extension pole.

Samples were filtered and preserved on-site where necessary, stored on ice, and couriered overnight to the NATA-accredited Envirolab in Sydney. Trip blank samples (013) were sent from Envirolab and transported to all sites, then returned to Envirolab with the field samples. The field blank samples (014) were assessed at Site 002. Duplicate samples (015) were collected at Site 002 and were filtered and preserved as required. Field and trip blanks were filled with deionized water and do not represent water quality from the site. A full list of analytes for the project is included in **Appendix C**.

6.0 ASSESSMENT CRITERIA

Water quality results were compared against the Water Quality Objectives (WQO) in the following guidelines.

- NSW Water Quality Objectives for the Tweed River Catchment for Aquatic Ecosystems (Tweed 2006) - Trigger criteria for estuaries.
- Australian and New Zealand guidelines for fresh and marine water quality (ANZECC 2000) –
 Trigger values for freshwater (level of protection 95% species).

7.0 RESULTS

7.1 Physico-chemical Results

In situ, physico-chemical sampling results with comparison to WQOs are shown in **Table 2**. There were no surface sheens visible at any sites, therefore oil and grease were not present.

Table 2. Results of physico-chemical parameters. The results above guidelines are highlighted.

	or priyotoo orio	Water	Quality es (WQOs)	Sample Codes and Results						
Analyte	Units	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Down)	EC 003 (Up)	DD 005 (Down)			
рН		7.0-8.5	6.5-8.5	6.30	6.84	7.18	7.15			
Turbidity	NTU	0.5-10	6.0-50	696.2	1.15	7.56	6.52			
Electrical Conductivity (EC)	μS/cm	125- 2,200	125- 2,200	153.80	227.38	337.43	1155.95			
Dissolved Oxygen (DO)	% Saturation	80-110	85-110	26.91	24.56	99.73	27.11			
Temperature	°C	N/A	N/A	21.24	22.02	22.02	22.15			
Oxidation- Reduction Potential (ORP)	mV	N/A	N/A	89.12	167.52	115.07	46.06			

When compared to the WQOs for freshwater and estuaries:

- pH was outside the WQO range at sample Sites 001 and 002 this sampling round.
- Turbidity was outside of the WQO ranges at sample Site 001 this sampling round.
- EC concentrations were inside of the expected range at all sampling sites this sampling round.
- DO concentrations were outside of the expected range at sample Sites 001, 002 and 005 this sampling round. DO was outside the range at comparison sites in background sampling.

7.2 Laboratory Results

Ammonia, Chlorophyll-a, Filterable Reactive Phosphorous (FRP), Oxides of Nitrogen (NOx), Total Nitrogen and Total Phosphorus were above the WQOs for some sample sites shown in **Table 3**.

The chain of custody form is included in **Appendix D**. A summary of all lab results with comparison to WQOs is included as **Appendix E**. A full copy of the laboratory results is included as **Appendix F**.

Table 3. Parameters in exceedance of the trigger criteria for sampling conducted. Results above guidelines are highlighted.

and the state of t												
		Water (Object (WQ	tives									
Analyte	Unit	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Down)	EC 003 (Up)	DD 005 (Down)	013 Trip	014 Field	015 Duplicate		
Ammonia	mg/L	0.015	0.02	0.33	0.007	0.041	0.33	<0.005	<0.005	0.008		
Chlorophyll-a	mg/ m³	4	5	6	41	6	6	<1	<1	45		
Filterable Reactive Phosphorus	mg/L	0.005	0.02	0.009	<0.005	0.04	0.009	<0.005	<0.005	0.01		
Oxides of Nitrogen	mg/L	0.015	0.040	0.2	0.2	<0.005	0.2	<0.005	0.007	0.2		
Total Nitrogen	mg/L	0.30	0.35	1.1	0.7	0.5	1.1	<0.1	0.008	0.7		
Total Phosphorus	mg/L	0.030	0.025	0.22	0.09	0.1	0.03	<0.02	<0.02	0.08		

When compared to the WQOs for Freshwater and Estuaries:

- Ammonia was above the WQOs at all sample Sites this sampling round. Ammonia was above the WQOs at comparison sites in background sampling. Ammonia has decreased at sample Sites 002, and 003 and increased at all other sites when compared to the previous month.
- Chlorophyll-a was above the WQOs at all sample Sites this sampling round. Chlorophyll-a has
 decreased at sample Sites 002, and 005 and increased at all other sites when compared to the
 previous month.
- Filterable Reactive Phosphorus was above WQOs at sample Sites 001 and 003 this sampling round. Filterable Reactive Phosphorus has decreased at sample Sites 001 and 002 and increased at all other sites when compared to the previous month.
- NOx was above the WQOs criteria at sample Sites 001, 002 and 005. NOx has increased at sample Sites 001 and 002, decreased at sample Site 005 and remained the same at sample Site 003 when compared to the previous month.

- TN was above the WQOs criteria at all sites this sampling round. TN has increased at sample Site 001, decreased at sample Site 005 and remained the same at sample Sites 002 and 003 when compared to the previous month.TN was above the WQOs at comparison sites in baseline sampling.
- TP was above the WQOs criteria at all sample sites this sampling round. TP has increased at sample Site 001, decreased at sample Sites 002 and 005 and remained the same at sample Site 003 when compared to the previous month.
- All metals were within estuarine and freshwater criteria this month.
- Demeton was analysed and returned non-detectable results.
- TRH (C₁₀-C₄₀) was not detected at any sample site.

8.0 Quality Assurance and Quality Control

- Parameters analysed in the Trip Blank (013) and Field Blank (014) were below the laboratory detection limits for all analytes except for silver and very low level nutrients which was found in the trip blank. Silver is used to make demineralised water and the laboratory has confirmed this is due to laboratory procedures and not a result of contamination.
- The Duplicate Sample (015) was collected at Site 005 and is within acceptable limits for all analytes.
- The laboratory QA/QC is included in the results in **Appendix F**. All laboratory QA/QC was within acceptance criteria.

9.0 Summary of Results and Recommendations

- The month had low to moderate rainfall.
- Nutrients (Ammonia, NOx, TN, and TP) and Chlorophyll-a were high and exceeded some water quality parameters for some sites. This includes upstream and downstream sites in past sampling events. Exceedances in nutrients are therefore considered of natural occurrence.
- Elevated nutrients have been observed at all sampling locations including upstream and downstream sites in previous months and during baseline sampling. Therefore, based on the assessment of the March/April water quality data, the Tweed Valley Hospital Project construction activities are unlikely to be adversely impacting the downstream water quality. As such, the current soil and erosion controls implemented on site are considered to be effective.

Kind regards,

Environmental Engineer & Director

mob: office: (02) 66-215-123 fax: (02) 66-218-123 ABN: 82 106 758 123

Appendix A. Site Photos

Appendix B. Calibration certificate for Aqua troll

provations in Water Monitoring

Calibration Report

Instrument Details:

Instrument Model: Full Scale Pressure Range: Serial Number: Manufacture Date:

Aqua TROLL® 400 0 - 250 ft (0 - 76 m) 1008667 2023-02-17

Calibration Details:

Calibration Result: Calibration Date:

Nominal Range of Applied Temperature: Temperature Accuracy Specification:

Nominal Range of Applied Pressure: Pressure Accuracy Specification: Conductivity Calibration:

Rugged Dissolved Oxygen Calibration: pH/ORP Check:

0 - 250 feet +/-0.3% FS

PASS

2023-01-16

0 C to +50 C

Pass with a cell constant of 1.00.

+/-0.1 C from 0 C to +50 C

Pass with an optical phase difference of +/- 2 degrees.

Pass with mV readings of +/- 5 mV.

Post-Calibration Check:

Parameter	Applied (PSI)	Reported (PSI)	Deviation (PSI)		
Pressure	7	6.979	0.021		
Pressure	65	65.008	-0.008		
Pressure	122.995	122.991	0.004		
Pressure	84.333	84.341	-0.008		
Pressure	45.667	45.692	-0.025		
Pressure	7	6.992	0.008		

Calibration Procedures and Equipment Used:

Automated calibration procedures used.

Calibrated in 900, 9000, & 90000 $\mu\text{S/cm}$ conductivity standards.

Manu MENSOR Model 600 Serial No 610915 Manu HART Model 1504 Serial No B42917 Manu instrulab Model 406 Serial No 4-31139

Notes:

- 1. Standards used in the calibration are traceable to the National Institute of Standards and Technology.
- 2. This calibration report shall not be reproduced, except in full, without the written approval of In-Situ, Inc.
- 3. A calibration interval of 12 to 18 months is recommended.
- 4. The post-calibration data is collected at nominal +15C.
- 5. 1.0 PSI = 6.894757 kPa.

WWW.IN-SITU.COM

221 East Lincoln Avenue, Fort Collins, CO 80524 USA oll Free: 800.446.7488 Tel: 970.498.1500 Fax: 970.498.1598

Copyright © 2015 In-Situ Inc. This document is confidential and is the property of In-Situ Inc. Do not distribute without approval.

Appendix C. Full List of Sampling Analytes

3.7 Proposed Surface Water Quality Sampling Parameters

A summary of the proposed sampling analytes is provided below:

Field

- pH
- Turbidity
- Electrical Conductivity (EC)
- Dissolved Oxygen (DO)
- Temperature
- Oxidation Reduction Potential (ORP)
- Oil and grease

Laboratory

- Total Suspended Solids (TSS)
- Total Dissolved Solids (TDS)
- Major Cations & Hardness
- Ammonia
- Chlorophyll-a
- Filterable Reactive Phosphorus
- Nitrate
- Oxides of Nitrogen
- Total Nitrogen
- Total Phosphorus
- Aluminium (pH > 6.5) filtered
- Arsenic (filtered)
- Boron (filtered)
- · Cadmium (filtered)
- · Chromium (filtered)
- Copper (filtered)
- Cobalt (filtered)Lead (filtered)
- Manganese (filtered)
- Mercury (filtered)

- Nickel (filtered)
- Selenium (filtered)
- · Silver (filtered)
- Zinc (filtered)
- Benzene
- Toluene
- Ethylbenzene
- · Xylene Total
- Naphthalene
- Total Recoverable Hydrocarbons (TRH)
- · Organochlorine Pesticides (OCP)
 - o 4.4'-DDE
 - o 4.4'-DDT
 - o Aldrin
 - o g-BHC (Lindane)
 - o Chlordane
 - Dieldrin
 - Endosulfan
 - Endrin
 - Heptachlor
 - Toxaphene
- Organophosphorus Pesticides (OPP)
 - Azinphos-methyl
 - Chlorpyrifos
 - o Demeton-S
 - Diazinon
 - DimethoateFenitrothion
 - Malathion

If a sample returns detectable concentrations of the analytes presented in Table 1, additional analyses may be required to enable comparison against additional trigger criteria or trace potential sources of contaminants. It is cost prohibitive to analyse these parameters unless required.

Table 1 Additional Analysis Requirements

Analyte	Additional Analysis
Total Recoverable Hydrocarbons	TRH Silica-gel Clean-up
Arsenic (filtered)	Arsenic (III) (filtered) Arsenic (V) (filtered)
Chromium (filtered)	Chromium (CrVI) (filtered)

Appendix D. Chain of Custody Form

[Copyright and C	confidential] ยางั้เลิดเคย	CHA	IN OF	CUSTO	DY	- (lier	nt							1	ydney L	St, Cha	tswood	, NSW :	
EŃVĨROLÀI		ENIVE	OI AR CE	OLID - Nove		 .	k-	. 430	0.43	. 244						erth Lat				THOROGRAPHING
		FIAATE	COLAB GR	ROUP - Natio	÷	_				_					16-18 Hayden Crt, Myaree, WA 6154 Ph: 08 9317 2505 / lab@mpl.com.au				6154	
Client: Ecoteam					Client			-			te (le report tide).						,			
Contact							MC009.4	6 - TV	veed v	alley H	ospita	Proje	ct			đelbouri 5 Resea				rices uth, VIC 3136
Project I					PO No		uote No.				100022	8_Rev		-						@envirolab.com.au
Sampler: Lise Bo							required			-	195122	o_kev			l į	delaide	Office -	Envirol	ab Serv	vices
Address: 13 Ewin	-				1		standard		a day	/ 1 day	,,,,,	ov / 3	day			a The Pa				067 envirolab.com.au
Lismore NSW 24	80						lab in adv							harges					_	
					apply				-							irisbane Da, 10-2				
Phone:	02 6621 5123				_		eport for	mat:	esdat	equis	/				F	h: 07 32	66 953	2/ brist	bane@e	envirolab.com.au
Email:						Comme	nts: As, B, Cd	. Cr. C	u. Co	Dh. Mn	Hn. N	li. Se i	Ma. 7.			arwin C				
	Testing requirements - C <0.025 mg/L, Silver <				Catio	ns: Na	/K/Ca/M etals res	g. Plea	ase ho	d Cr6				itial						NT 0820 virolab.com.au
		formation									Tests	Requ	ired	ete						Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	TRH/BTEXN	Dissolved Metals	OC/OP + toxaphene + demeton	TSS	TDS	Cations + Hardness	Ammonia	Cholorphyll-a	Phosphate (FRP)	Nitrate	Nox	Total N	Total P	Cr6+- HOLD	ASIII & V - HOLD	Provide as much information about the sample as you can
1	001 - USW	300 mm	18-Apr	Water	Х	Х	Х	Х	٠χ	Х	Х	Х	Х	Х	Х	Х	Х			
7	002 - USNW	150 mm	18-Apr	Water	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	X	Х	Х			
3	003 - DSE	300 mm	18-Apr	Water	Х	X	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х			
—— '	005 - Dam Drain	150 mm	18-Apr	Water	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	·X	X		T	
9	013	300 mm	18-Apr	Water	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
6	014	300 mm	18-Apr	Water	X	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	X		\Box	
1	015	300 mm	18-Apr	Water	Х	X	X	Х	X	Х	Х	X	Х	Х	Х	Х	Х			
				_	Г															
					П															
									==			===	-	==	==	=	=	-	7	
	Please tick the box	if observ	ed settled	sediment pre	sent-	in-wa	ter sa	mple	es is	to be	inc	lude	in t	he e	xtrac	tion	and/	or a	nalys	sis
Relinquished by	(Company):	Ecoteam		Received by (Con	прапу):	: 6	765 ST	10								Lai	b Use	Опју		
Print Name:		effery Presb	ury	Print Name:	DL		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Job r	umbe	r: 3	212	07		Cooli	ing: I	ce //1	(ce pack)/ None
Date & Time:	18/04/2023				19/4	122	12	33			Temperature: 15°C Security seal: Intact) Brol									
Signature:	Jeffery Presbury			Signature:	_						1 1 / 2 / 3 / 4 / STD									

Form 302_V004

Issue date: 21 May 2019

Page 1 of 1

Appendix E. Summary of Lab Results compared to WQOs

		Water (Object (WC		Sample Codes							
Analyte	Unit	Estuary	Fresh Water	WC 001	NWC 002	EC 003	DD 005		013 Trip	014 Field	015 Duplicate
Total Suspended Solids (TSS)	mg/L	N/A	N/A	67	12	6	<5		<5	<5	11
Total Dissolved Solids (TDS)	mg/L	N/A	N/A	900	210	150	80		< 5	<5	200
			Major Ca	tions (di	ssolved)	and Hard	Iness				
Sodium	mg/L	N/A	N/A	100	31	25	20		<0.5	<0.5	31
Potassium	mg/L	N/A	N/A	7.0	2	2	1		<0.5	<0.5	2
Calcium	mg/L	N/A	N/A	120	23	12	3		<0.5	<0.5	23
Magnesium	mg/L	N/A	N/A	29	8.1	4	4		<0.5	<0.5	8.1
Hardness mgCa	aCO ₃ /L	N/A	N/A	430	91	46	25		<3	<3	91
Nutrients											
Ammonia	mg/L	0.015	0.02	0.33	0.007	0.041	0.33		<0.005	<0.005	0.008
Chlorophyll-a	mg/m³	4	5	6	41	6	6		<1	<1	45
Filterable Reactive Phosphorus	mg/L	0.005	0.02	0.009	<0.005	0.04	0.009		<0.005	<0.005	0.01
Nitrate	mg/L	N/A	N/A	0.19	0.22	<0.005	0.19		<0.005	<0.005	0.22
Oxides of Nitrogen	mg/L	0.015	0.040	0.2	0.2	<0.005	0.2		<0.005	0.007	0.2
Total Nitrogen	mg/L	0.30	0.35	1.1	0.7	0.5	1.1		<0.1	0.008	0.7
Total Phosphorus	mg/L	0.030	0.025	0.22	0.09	0.1	0.03		<0.02	<0.02	0.08
	l .		Metals -	All metal	s are Di	ssolved N	letals				
Aluminium	μg/L	N/A	55	<10	10	50	10		<10	<10	10
Arsenic	μg/L	N/A	13	1	<1	<1	<1		<1	<1	<1
Boron	μg/L	N/A	370	200	80	30	50		<20	<20	80
Cadmium	μg/L	5.5	0.2	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1
Chromium	μg/L	4.4	1.0	<1	<1	<1	<1		<1	<1	<1
Copper	μg/L	1.3	1.4	<1	<1	<1	<1		<1	<1	<1
Cobalt	μg/L	1.0	N/A	<1	<1	<1	<1		<1	<1	<1
Lead	μg/L	4.4	3.4	<1	<1	<1	<1		<1	<1	<1
Manganese	μg/L	N/A	1,900	360	40	46	21		<1	<1	41
Mercury	μg/L	0.4	0.6	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
Nickel	μg/L	70	11	<1	<1	<1	<1		<1	<1	<1
Selenium	μg/L	N/A	11	<1	<1	<1	<1		<1	<1	<1
Silver	μg/L	1.4	0.05	<0.05	<0.05	<0.05	<0.05		0.2	0.06	<0.05
Zinc	μg/L	15	8.0	2	3	3	4		1	<1	2
					ı		ı				

		Water (Object (WQ	tives	Sample Codes							
Analyte	Unit	Estuary	Fresh	WC	NWC	EC	DD		013	014	015
Analyte	Oilit	Listuary	Water	001	002	003	005		Trip	Field	Duplicate
				Hydr	ocarbo	ns					
Benzene	μg/L	950	700	<1	<1	<1	<1		<1	<1	<1
Toluene	μg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1
Ethylbenzene	μg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1
Xylene	μg/L	N/A	550	<1	<1	<1	<1		<1	<1	<1
Naphthalene	μg/L	70	16	<1	<1	<1	<1		<1	<1	<1
TRH C ₆ - C ₁₀	μg/L	N/A	N/A	<10	<10	<10	<10		<10	<10	<10
TRH C ₁₀ - C ₁₆	μg/L	N/A	N/A	<50	<50	<50	<50		<50	<50	<50
TRH C ₁₆ - C ₃₄	μg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100
TRH C ₆ -C ₁₀ less BTEX (F1)	μg/L	N/A	N/A	<10	<10	<10	<10		<10	<10	<10
TRH >C ₁₀ -C ₁₆ less Naphthalene	μg/L	N/A	N/A	<50	<50	<50	<50		<50	<50	<50
Organochlorine Pesticides (OCP)											
4.4'-DDE	μg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
4.4'-DDL 4.4'-DDT		N/A	0.01	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006
Aldrin	µg/L	N/A	N/A	<0.000	<0.000	<0.00	<0.000		<0.000	<0.000	<0.000
g-BHC	μg/L	N/A	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Chlordane	µg/L	N/A	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Dieldrin	μg/L	N/A	0.08 N/A								
Endosulfan	μg/L		0.2	<0.01 <0.01	<0.01 <0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Endosulian	μg/L	0.01	0.2						<0.01	<0.01	
Heptachlor	µg/L	N/A	0.008	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
<u> </u>	µg/L	N/A	0.09	<0.01 <2	<0.01	<2	<0.01		<0.01	<0.01	<0.01
Toxaphene	μg/L				<2 TUG Day				<2	<2	<2
	1	U	rganop	nospno	rus Pe	sticides	(OPP)			1	
Azinphos- methyl	μg/L	N/A	0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02
Chlorpyriphos	μg/L	0.009	0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Demeton-S	μg/L	N/A	N/A	<5	<5	<5	<5		<5	<5	<5
Diazinon	μg/L	N/A	0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01
Dimethoate	μg/L	N/A	0.15	<0.15	<0.15	<0.15	<0.15		<0.15	<0.15	<0.15
Fenitrothion	μg/L	N/A	0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2
				i .			1				

Appendix F. Full Laboratory Results

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 321209

Client Details	
Client	Ecoteam
Attention	
Address	13 Ewing Street, Lismore, NSW, 2480

Sample Details	
Your Reference	SMC009.46 - Tweed Valley Hospital Project
Number of Samples	7 Water
Date samples received	19/04/2023
Date completed instructions received	19/04/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details								
Date results requested by	27/04/2023							
Date of Issue	27/04/2023							
NATA Accreditation Number 2901. Thi	NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IE	C 17025 - Testing. Tests not covered by NATA are denoted with *							

Results Approved By

organics Supervisor
Senior Chemist
Metals Supervisor
ior Chemist
rganics Supervisor
evelopment Chemist

Authorised By

vTRH(C6-C10)/BTEXN in Water						
Our Reference		321209-1	321209-2	321209-3	321209-4	321209-5
Your Reference	UNITS	001-USW	002-USNW	003-DSE	005-Dam Drain	013
Depth		300mm	150mm	300mm	150mm	300mm
Date Sampled		18/04/2023	18/04/2023	18/04/2023	18/04/2023	18/04/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	20/04/2023	20/04/2023	20/04/2023	20/04/2023	20/04/2023
Date analysed	-	21/04/2023	21/04/2023	21/04/2023	21/04/2023	21/04/2023
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	105	104	106	106	107
Surrogate toluene-d8	%	100	98	99	100	101
Surrogate 4-BFB	%	106	105	106	102	103

vTRH(C6-C10)/BTEXN in Water			
Our Reference		321209-6	321209-7
Your Reference	UNITS	014	015
Depth		300mm	300mm
Date Sampled		18/04/2023	18/04/2023
Type of sample		Water	Water
Date extracted	-	20/04/2023	20/04/2023
Date analysed	-	21/04/2023	21/04/2023
TRH C ₆ - C ₉	μg/L	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	105	106
Surrogate toluene-d8	%	100	96
Surrogate 4-BFB	%	101	110

Envirolab Reference: 321209

svTRH (C10-C40) in Water						
Our Reference		321209-1	321209-2	321209-3	321209-4	321209-5
Your Reference	UNITS	001-USW	002-USNW	003-DSE	005-Dam Drain	013
Depth		300mm	150mm	300mm	150mm	300mm
Date Sampled		18/04/2023	18/04/2023	18/04/2023	18/04/2023	18/04/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
Date analysed	-	27/04/2023	27/04/2023	27/04/2023	27/04/2023	27/04/2023
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	92	87	77	82	83

svTRH (C10-C40) in Water			
Our Reference		321209-6	321209-7
Your Reference	UNITS	014	015
Depth		300mm	300mm
Date Sampled		18/04/2023	18/04/2023
Type of sample		Water	Water
Date extracted	-	26/04/2023	26/04/2023
Date analysed	-	27/04/2023	27/04/2023
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100
Surrogate o-Terphenyl	%	77	80

OCPs in Water - Low Level						
Our Reference		321209-1	321209-2	321209-3	321209-4	321209-5
Your Reference	UNITS	001-USW	002-USNW	003-DSE	005-Dam Drain	013
Depth		300mm	150mm	300mm	150mm	300mm
Date Sampled		18/04/2023	18/04/2023	18/04/2023	18/04/2023	18/04/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
Date analysed	-	26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
alpha-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
нсв	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
beta-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aldrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan I	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDE	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Dieldrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan II	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDD	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin Aldehyde	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDT	μg/L	<0.006	<0.006	<0.006	<0.006	<0.006
Endosulfan Sulphate	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Methoxychlor	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate TCMX	%	93	90	84	96	91

OCPs in Water - Low Level			
Our Reference		321209-6	321209-7
Your Reference	UNITS	014	015
Depth		300mm	300mm
Date Sampled		18/04/2023	18/04/2023
Type of sample		Water	Water
Date extracted	-	26/04/2023	26/04/2023
Date analysed	-	26/04/2023	26/04/2023
alpha-BHC	μg/L	<0.01	<0.01
HCB	μg/L	<0.01	<0.01
beta-BHC	μg/L	<0.01	<0.01
gamma-BHC	μg/L	<0.01	<0.01
Heptachlor	μg/L	<0.01	<0.01
delta-BHC	μg/L	<0.01	<0.01
Aldrin	μg/L	<0.01	<0.01
Heptachlor Epoxide	μg/L	<0.01	<0.01
gamma-Chlordane	μg/L	<0.01	<0.01
alpha-Chlordane	μg/L	<0.01	<0.01
Endosulfan I	μg/L	<0.01	<0.01
pp-DDE	μg/L	<0.01	<0.01
Dieldrin	μg/L	<0.01	<0.01
Endrin	μg/L	<0.01	<0.01
Endosulfan II	μg/L	<0.01	<0.01
pp-DDD	μg/L	<0.01	<0.01
Endrin Aldehyde	μg/L	<0.01	<0.01
pp-DDT	μg/L	<0.006	<0.006
Endosulfan Sulphate	μg/L	<0.01	<0.01
Methoxychlor	μg/L	<0.01	<0.01
Surrogate TCMX	%	91	91

OP in water LL ANZECCF/ADWG						
Our Reference		321209-1	321209-2	321209-3	321209-4	321209-5
Your Reference	UNITS	001-USW	002-USNW	003-DSE	005-Dam Drain	013
Depth		300mm	150mm	300mm	150mm	300mm
Date Sampled		18/04/2023	18/04/2023	18/04/2023	18/04/2023	18/04/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
Date analysed	-	26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
Dichlorovos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.15	<0.15	<0.15	<0.15	<0.15
Diazinon	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl Parathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyriphos	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Parathion	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate TCMX	%	93	90	84	96	91

OP in water LL ANZECCF/ADWG			
Our Reference		321209-6	321209-7
Your Reference	UNITS	014	015
Depth		300mm	300mm
Date Sampled		18/04/2023	18/04/2023
Type of sample		Water	Water
Date extracted	-	26/04/2023	26/04/2023
Date analysed	-	26/04/2023	26/04/2023
Dichlorovos	μg/L	<0.2	<0.2
Dimethoate	μg/L	<0.15	<0.15
Diazinon	μg/L	<0.01	<0.01
Chlorpyriphos-methyl	μg/L	<0.2	<0.2
Methyl Parathion	μg/L	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2
Malathion	μg/L	<0.05	<0.05
Chlorpyriphos	μg/L	<0.01	<0.01
Parathion	μg/L	<0.01	<0.01
Bromophos ethyl	μg/L	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.02	<0.02
Surrogate TCMX	%	91	91

Miscellaneous Organics - water						
Our Reference		321209-1	321209-2	321209-3	321209-4	321209-5
Your Reference	UNITS	001-USW	002-USNW	003-DSE	005-Dam Drain	013
Depth		300mm	150mm	300mm	150mm	300mm
Date Sampled		18/04/2023	18/04/2023	18/04/2023	18/04/2023	18/04/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
Date analysed	-	26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
Toxaphene*	μg/L	<2	<2	<2	<2	<2
Demeton-O	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Demeton-S	μg/L	<5	<5	<5	<5	<5
Surrogate p-Terphenyl-d ₁₄	%	86	86	76	82	79

Miscellaneous Organics - water			
Our Reference		321209-6	321209-7
Your Reference	UNITS	014	015
Depth		300mm	300mm
Date Sampled		18/04/2023	18/04/2023
Type of sample		Water	Water
Date prepared	-	26/04/2023	26/04/2023
Date analysed	-	26/04/2023	26/04/2023
Toxaphene*	μg/L	<2	<2
Demeton-O	μg/L	<0.2	<0.2
Demeton-S	μg/L	<5	<5
Surrogate p-Terphenyl-d ₁₄	%	86	82

HM in water - dissolved						
Our Reference		321209-1	321209-2	321209-3	321209-4	321209-5
Your Reference	UNITS	001-USW	002-USNW	003-DSE	005-Dam Drain	013
Depth		300mm	150mm	300mm	150mm	300mm
Date Sampled		18/04/2023	18/04/2023	18/04/2023	18/04/2023	18/04/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	21/04/2023	21/04/2023	21/04/2023	21/04/2023	21/04/2023
Date analysed	-	21/04/2023	21/04/2023	21/04/2023	21/04/2023	21/04/2023
Aluminium-Dissolved	μg/L	<10	10	50	10	<10
Arsenic-Dissolved	μg/L	1	<1	<1	<1	<1
Boron-Dissolved	μg/L	200	80	30	50	<20
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Manganese-Dissolved	μg/L	360	40	46	21	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Silver-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	0.2
Zinc-Dissolved	μg/L	2	3	3	4	<1

HM in water - dissolved			
Our Reference		321209-6	321209-7
Your Reference	UNITS	014	015
Depth		300mm	300mm
Date Sampled		18/04/2023	18/04/2023
Type of sample		Water	Water
Date prepared	-	21/04/2023	21/04/2023
Date analysed	-	21/04/2023	21/04/2023
Aluminium-Dissolved	μg/L	<10	10
Arsenic-Dissolved	μg/L	<1	<1
Boron-Dissolved	μg/L	<20	80
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	μg/L	<1	<1
Cobalt-Dissolved	μg/L	<1	<1
Lead-Dissolved	μg/L	<1	<1
Manganese-Dissolved	μg/L	<1	41
Mercury-Dissolved	μg/L	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1
Selenium-Dissolved	μg/L	<1	<1
Silver-Dissolved	μg/L	0.06	<0.05
Zinc-Dissolved	μg/L	<1	2

Metals in Waters - Acid extractable						
Our Reference		321209-1	321209-2	321209-3	321209-4	321209-5
Your Reference	UNITS	001-USW	002-USNW	003-DSE	005-Dam Drain	013
Depth		300mm	150mm	300mm	150mm	300mm
Date Sampled		18/04/2023	18/04/2023	18/04/2023	18/04/2023	18/04/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	20/04/2023	20/04/2023	20/04/2023	20/04/2023	20/04/2023
Date analysed	-	20/04/2023	20/04/2023	20/04/2023	20/04/2023	20/04/2023
Phosphorus - Total	mg/L	0.22	0.09	0.1	0.03	<0.02

Metals in Waters - Acid extractable			
Our Reference		321209-6	321209-7
Your Reference	UNITS	014	015
Depth		300mm	300mm
Date Sampled		18/04/2023	18/04/2023
Type of sample		Water	Water
Date prepared	-	20/04/2023	20/04/2023
Date analysed	-	20/04/2023	20/04/2023
Phosphorus - Total	mg/L	<0.02	0.08

Cations in water Dissolved						
Our Reference		321209-1	321209-2	321209-3	321209-4	321209-5
Your Reference	UNITS	001-USW	002-USNW	003-DSE	005-Dam Drain	013
Depth		300mm	150mm	300mm	150mm	300mm
Date Sampled		18/04/2023	18/04/2023	18/04/2023	18/04/2023	18/04/2023
Type of sample		Water	Water	Water	Water	Water
Date digested	-	21/04/2023	21/04/2023	21/04/2023	21/04/2023	21/04/2023
Date analysed	-	21/04/2023	21/04/2023	21/04/2023	21/04/2023	21/04/2023
Sodium - Dissolved	mg/L	100	31	25	20	<0.5
Potassium - Dissolved	mg/L	7.0	2	2	1	<0.5
Calcium - Dissolved	mg/L	120	23	12	3	<0.5
Magnesium - Dissolved	mg/L	29	8.1	4	4	<0.5
Hardness	mgCaCO 3 /L	430	91	46	25	<3

Cations in water Dissolved			
Our Reference		321209-6	321209-7
Your Reference	UNITS	014	015
Depth		300mm	300mm
Date Sampled		18/04/2023	18/04/2023
Type of sample		Water	Water
Date digested	-	21/04/2023	21/04/2023
Date analysed	-	21/04/2023	21/04/2023
Sodium - Dissolved	mg/L	<0.5	31
Potassium - Dissolved	mg/L	<0.5	2
Calcium - Dissolved	mg/L	<0.5	23
Magnesium - Dissolved	mg/L	<0.5	8.1
Hardness	mgCaCO 3 /L	<3	91

Miscellaneous Inorganics						
Our Reference		321209-1	321209-2	321209-3	321209-4	321209-5
Your Reference	UNITS	001-USW	002-USNW	003-DSE	005-Dam Drain	013
Depth		300mm	150mm	300mm	150mm	300mm
Date Sampled		18/04/2023	18/04/2023	18/04/2023	18/04/2023	18/04/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	19/04/2023	19/04/2023	19/04/2023	19/04/2023	19/04/2023
Date analysed	-	19/04/2023	19/04/2023	19/04/2023	19/04/2023	19/04/2023
Total Suspended Solids	mg/L	67	12	6	<5	<5
Total Dissolved Solids (grav)	mg/L	900	210	150	80	<5
Ammonia as N in water	mg/L	0.33	0.007	0.041	<0.005	<0.005
Chlorophyll a	mg/m³	6	41	6	1	<1
Phosphate as P in water	mg/L	0.009	<0.005	0.04	<0.005	<0.005
Nitrate as N in water	mg/L	0.19	0.22	<0.005	1.2	<0.005
NOx as N in water	mg/L	0.2	0.2	<0.005	1.2	<0.005
Total Nitrogen in water	mg/L	1.1	0.7	0.5	1.8	<0.1

Miscellaneous Inorganics			
Our Reference		321209-6	321209-7
Your Reference	UNITS	014	015
Depth		300mm	300mm
Date Sampled		18/04/2023	18/04/2023
Type of sample		Water	Water
Date prepared	-	19/04/2023	19/04/2023
Date analysed	-	19/04/2023	19/04/2023
Total Suspended Solids	mg/L	<5	11
Total Dissolved Solids (grav)	mg/L	<5	200
Ammonia as N in water	mg/L	<0.005	0.008
Chlorophyll a	mg/m³	<1	45
Phosphate as P in water	mg/L	<0.005	0.01
Nitrate as N in water	mg/L	0.007	0.22
NOx as N in water	mg/L	0.008	0.2
Total Nitrogen in water	mg/L	<0.1	0.7

Method ID	Methodology Summary
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
	NOTE: Where the EC of the sample is <100µS/cm, the TDS will typically be below 70mg/L (as the sample is very likely to be at least drinking water quality). Therefore to ensure data quality for TDS, the TDS is typically calculated as per the equation below:-
	TDS = EC * 0.6
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
INORG-119	Chlorophyll A based on APHA 10200 H latest edition.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTI	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			20/04/2023	1	20/04/2023	20/04/2023		20/04/2023	
Date analysed	-			21/04/2023	1	21/04/2023	24/04/2023		21/04/2023	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	110	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	110	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	106	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	109	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	113	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	112	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	109	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	108	1	105	109	4	101	
Surrogate toluene-d8	%		Org-023	102	1	100	96	4	101	
Surrogate 4-BFB	%		Org-023	110	1	106	108	2	106	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			26/04/2023	[NT]		[NT]	[NT]	26/04/2023	
Date analysed	-			26/04/2023	[NT]		[NT]	[NT]	26/04/2023	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	99	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	107	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	86	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	[NT]		[NT]	[NT]	99	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	107	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	86	
Surrogate o-Terphenyl	%		Org-020	76	[NT]		[NT]	[NT]	68	

QUALITY	CONTROL: OCF	Ps in Wate	er - Low Level			Dι	ıplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	-			26/04/2023	[NT]		[NT]	[NT]	26/04/2023		
Date analysed	-			26/04/2023	[NT]		[NT]	[NT]	26/04/2023		
alpha-BHC	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	83		
НСВ	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
beta-BHC	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	82		
gamma-BHC	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Heptachlor	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	92		
delta-BHC	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Aldrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	84		
Heptachlor Epoxide	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	84		
gamma-Chlordane	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
alpha-Chlordane	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
pp-DDE	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	89		
Dieldrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	91		
Endrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	87		
Endosulfan II	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
pp-DDD	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	93		
Endrin Aldehyde	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
pp-DDT	μg/L	0.006	Org-022	<0.006	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	86		
Methoxychlor	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	89	[NT]		[NT]	[NT]	90		

Envirolab Reference: 321209

QUALITY CON	TROL: OP in w	ater LL A	NZECCF/ADWG			Du		Spike Red	overy %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			26/04/2023	[NT]		[NT]	[NT]	26/04/2023	
Date analysed	-			26/04/2023	[NT]		[NT]	[NT]	26/04/2023	
Dichlorovos	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	95	
Dimethoate	μg/L	0.15	Org-022/025	<0.15	[NT]		[NT]	[NT]	[NT]	
Diazinon	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Methyl Parathion	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ronnel	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	74	
Fenitrothion	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	89	
Malathion	μg/L	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	97	
Chlorpyriphos	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	90	
Parathion	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	89	
Bromophos ethyl	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ethion	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	96	
Azinphos-methyl (Guthion)	μg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	89	[NT]		[NT]	[NT]	90	

Envirolab Reference: 321209

QUALITY CONTE	ROL: Miscell	aneous C	Organics - water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			26/04/2023	[NT]		[NT]	[NT]	26/04/2023	
Date analysed	-			26/04/2023	[NT]		[NT]	[NT]	26/04/2023	
Toxaphene*	μg/L	2	Org-022/025	<2	[NT]		[NT]	[NT]	[NT]	
Demeton-O	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Demeton-S	μg/L	5	Org-022/025	<5	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-022/025	80	[NT]	[NT]	[NT]	[NT]	98	[NT]

Envirolab Reference: 321209

QUALITY CO	ONTROL: HM	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date prepared	-			21/04/2023	1	21/04/2023	21/04/2023		21/04/2023	[NT]
Date analysed	-			21/04/2023	1	21/04/2023	21/04/2023		21/04/2023	[NT]
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	<10	<10	0	92	[NT]
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	1	1	0	92	[NT]
Boron-Dissolved	μg/L	20	Metals-022	<20	1	200	200	0	98	[NT]
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	93	[NT]
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	91	[NT]
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	91	[NT]
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	89	[NT]
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	98	[NT]
Manganese-Dissolved	μg/L	1	Metals-022	<1	1	360	360	0	99	[NT]
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	96	[NT]
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	96	[NT]
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	92	[NT]
Silver-Dissolved	μg/L	0.05	Metals-022	<0.05	1	<0.05	<0.05	0	95	[NT]
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	2	1	67	97	[NT]

QUALITY CONTROL: Metals in Waters - Acid extractable					Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	321209-2	
Date prepared	-			20/04/2023	1	20/04/2023	20/04/2023		20/04/2023	20/04/2023	
Date analysed	-			20/04/2023	1	20/04/2023	20/04/2023		20/04/2023	20/04/2023	
Phosphorus - Total	mg/L	0.02	Metals-020	<0.02	1	0.22	0.23	4	98	99	

Envirolab Reference: 321209

QUALITY CON		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			21/04/2023	[NT]		[NT]	[NT]	21/04/2023	
Date analysed	-			21/04/2023	[NT]		[NT]	[NT]	21/04/2023	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	95	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	89	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	92	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]	[NT]	[NT]	[NT]	92	[NT]

QUALITY CONTROL: Miscellaneous Inorganics						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	321209-2
Date prepared	-			19/04/2023	1	19/04/2023	19/04/2023		19/04/2023	19/04/2023
Date analysed	-			19/04/2023	1	19/04/2023	19/04/2023		19/04/2023	19/04/2023
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	67	77	14	98	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	900	920	2	87	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.33	0.31	6	102	102
Chlorophyll a	mg/m³	1	INORG-119	<1	1	6	[NT]		84	[NT]
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	0.009	0.009	0	101	102
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.19	0.19	0	106	97
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.2	0.2	0	106	97
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	1.1	1.1	0	95	91

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 321209

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 321209 Page | 25 of 26 Revision No: R00

Report Comments

Miscellaneous Organics - water - The recovery of LCS and matrix spike cannot be reported due to the fact they are not in the list of analytes requested. However, the non-reported analytes within the LCS and matrix spike had acceptable recoveries.

Envirolab Reference: 321209 Page | 26 of 26 R00