

Tuesday 11 July 2022

To:

Site Engineer, Lendlease Tweed Valley Hospital Project **Environmental Engineer & Director**

mob: office: (02) 66-215-123 fax: (02) 66-218-123 ABN: 82 106 758 123

Re: Surface Water Quality Monitoring Results and Report for the Tweed Valley Hospital Project Reporting period: 17 May 2022 to 15 June 2022

1.0 INTRODUCTION

Ecoteam is engaged to undertake monthly and event-based surface water monitoring on behalf of Lendlease Building, as part of the main works for the Tweed Valley Hospital Project. This report presents results from the 36th round of monthly sampling. This report satisfies the requirements of the SSD2 conditions. No controlled or uncontrolled releases from the sediment basins occurred during the reporting period.

2.0 PROJECT AIMS AND SAMPLING OBJECTIVES

The surface water monitoring objectives for the site are to detect changes during construction in receiving water quality resulting from the project. Stormwater discharges potentially contain increased sediment loads, nutrients, total and dissolved metals, hydrocarbons, or other contaminants such as pesticides. Baseline water quality data was performed on 19 and 26 November and 19 December 2018 to record water quality conditions under the existing land use prior to construction (Lendlease Building, 2019).

3.0 WEATHER CONDITIONS

Total rainfall in the period prior to sampling (*17 May 2022 to 15 June 2022*) was 253.0 mm with the highest 24-hour rainfall occurring on 23 May, being 90.6 mm (Kingscliff BOM Station 058137).

4.0 SAMPLING LOCATIONS

Samples were collected from four of the five monthly sampling Sites (001 - 003 and 005). Site 004 has been infilled and has been removed from ongoing sampling rounds. Control samples were also collected and analysed (013 - 015). Sample codes and corresponding sampling locations are shown in **Table 1** and **Figure 1**. Site photos taken on the day of sampling are included in **Appendix A**. During sampling, Site 002 was noted to be flowing South. Therefore, Site 002 will be assessed as an upstream sample site.

Sample Codes	Sample Codes Sampling Site Name		WQOs
001	West Creek (Downstream)	WC	Estuarine
002	North West Creek (Variable)	NWC	Estuarine
003	East Creek (Upstream)	EC	Freshwater
004	Dam (Downstream)	Dam	Freshwater
005	Dam Drain (Downstream)	DD	Freshwater
013	Trip Blank	Trip	NA
014 Field Blank		Field	NA
015	Field Duplicate	Duplicate	NA

Table 1. Monthly sampling sites, control samples, sample codes, and applicable WQOs.

Cudger

Figure 1. Map of monthly sampling sites (Source: Google Earth).

natural solutions for environmental challenges

5.0 SAMPLING METHODOLOGY `

Sampling was undertaken by **Jack Herror** on Thursday 16 June 2022. The weather was fine and sunny. In situ, physico-chemical measurements were collected using a Xylem YSI multi-parameter probe, and Turbidity was measured using a Turbimeter Plus turbidity meter. Oil and grease were visually assessed. The calibration certificate for the Xylem YSI is included in **Appendix B**. The Turbimeter Plus is calibrated before each sampling round. Water quality samples were collected at 300 mm below the surface where possible. Samples were collected from the bank using an extension pole.

Samples were filtered and preserved on-site where necessary, stored on ice, and couriered overnight to the NATA-accredited Envirolab in Sydney. Trip blank samples (013) were sent from Envirolab and transported to all sites, then returned to Envirolab with the field samples. The field blank samples (014) were assessed at Site 005. Duplicate samples (015) were collected at Site 003 and were filtered and preserved as required. Field and trip blanks were filled with deionized water and do not represent water quality from the site. A full list of analytes for the project is included in **Appendix C**.

6.0 ASSESSMENT CRITERIA

Water quality results were compared against the Water Quality Objectives (WQO) in the following guidelines.

- NSW Water Quality Objectives for the Tweed River Catchment for Aquatic Ecosystems (Tweed 2006) - Trigger criteria for estuaries.
- Australian and New Zealand guidelines for fresh and marine water quality (ANZECC 2000) Trigger values for freshwater (level of protection 95% species).

7.0 RESULTS

7.1 Physico-chemical Results

In situ, physico-chemical sampling results with comparison to WQOs are shown in **Table 2**. There were no surface sheens visible at any sites, therefore oil and grease were not present.

			Quality es (WQOs)	Sample Codes and Results							
Analyte	Units	Units Estuary		Units Estuary		Units Estuary Wat		WC 001 (Down)	NWC 002 (Up)	EC 003 (Up)	DD 005 (Down)
pН		7.0-8.5	6.5-8.5	7.78	6.83	6.82	6.95				
Turbidity	NTU	0.5-10	6.0-50	7.5	9.10	1.22	0.63				
Electrical Conductivity (EC)	µS/cm	125- 2,200	125- 2,200	521	336.9	174	148.2				
Dissolved Oxygen (DO)	% Saturation	80-110	85-110	30.9	43.3	19.3	22.4				
Temperature	°C	N/A	N/A	15.1	16.5	15.7	18.1				
Oxidation- Reduction Potential (ORP)	mV	N/A	N/A	105	127.8	137.4	118.9				

Table 2. Results of physico-chemical parameters. The results above guidelines are highlighted.

natural solutions for environmental challenges

When compared to the WQOs for freshwater and estuaries:

- pH was outside of the WQO ranges at sample Site 002 this sampling round.
- Turbidity was outside of the WQO ranges at sampling Sites 003, and 005 this sampling round.
- EC was within the WQO ranges at all sampling sites this sampling round.
- DO concentrations were outside of the expected range at all sampling sites this sampling round. DO
 was outside the range at comparison sites in background sampling.

7.2 Laboratory Results

Ammonia, Chlorophyll-a, Filterable Reactive Phosphorous (FRP), Oxides of Nitrogen (NOx), Total Nitrogen, and Total Phosphorus (TP) were above the WQOs for some sample sites. Aluminium was also outside WQOs. Parameters that exceeded the WQOs are shown in **Table 3**.

The chain of custody form is included in **Appendix D**. A summary of all lab results with comparison to WQOs is included as **Appendix E**. A full copy of the laboratory results is included as **Appendix F**.

Table 3. Parameters in exceedance of the trigger criteria for sampling conducted. Results above guidelines are highlighted.

		Water (Objec (WQ	tives							
Analyte	Unit	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Down)	EC 003 (Up)	DD 005 (Down)	013 Trip	014 Field	015 Duplicate
Ammonia	mg/L	0.015	0.02	0.048	0.093	0.016	<0.005	< 0.005	< 0.005	0.014
Chlorophyll-a	mg/m ³	4	5	<2	<2	<2	<2	<2	<2	<2
Filterable Reactive Phosphorus	mg/L	0.005	0.02	<0.005	<0.005	0.009	<0.005	<0.005	<0.005	0.009
Oxides of Nitrogen	mg/L	0.015	0.040	0.4	1.5	0.1	3.3	0.007	<0.005	0.1
Total Nitrogen	mg/L	0.30	0.35	0.7	1.8	0.6	4.1	<0.1	<0.1	0.6
Total Phosphorus	mg/L	0.030	0.025	0.02	0.02	0.04	<0.02	<0.02	<0.02	0.04
Aluminium	µg/L	N/A	55	<10	40	130	20	<10	<10	130

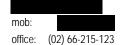
When compared to the WQOs for Freshwater and Estuaries:

- Ammonia was above the WQOs sampling sites 001 and 002 this sampling round. Ammonia was
 above the WQOs at comparison sites in background sampling. Ammonia has decreased at all sites
 compared to the previous month.
- Chlorophyll-a was below the WQOs at all sites this sampling round. Chlorophyll-a results were
 varied across comparison sites in background sampling. Chlorophyll-a has decreased at Sites 001
 and 002 and remained the same at Sites 003 and 005.
- FRP was below the WQOs at all sites this sampling round. FRP concentrations have decreased at Sites 002 and 003 and remained the same at Sites 001 and 005 when compared to last month. FRP results varied across comparison sites in background sampling though were lowest at Sites 001 and 005.

natural solutions for environmental challenges

- NOx was above the WQOs criteria at all sites this sampling round. NOx has decreased at Site 005 and increased at Sites 001, 002 and 003 when compared to the previous month.
- TN was above the WQOs criteria at all sites. TN has decreased at Sites 001 and 003 and increased at Sites 002 and 005 when compared to last month. TN was above the WQOs at comparison sites in baseline sampling.
- TP was above the WQOs at Site 003. TP has decreased Sites 001, 002, and 003 and remained the same at Site 005 when compared to the previous month. TP was above the WQOs at comparison sites in baseline sampling.
- Aluminium was above the WQO at Site 003. This is similar to the previous month. Aluminium has decreased at all sampling sites this sampling round when compared to last month. Aluminium has been observed at both upstream and downstream sampling sites during past sampling rounds.
- All other metals were within estuarine and freshwater criteria this month.
- Demeton was analysed and returned non-detectable results.
- TRH (C₁₀-C₄₀) was not detected at any sample site.

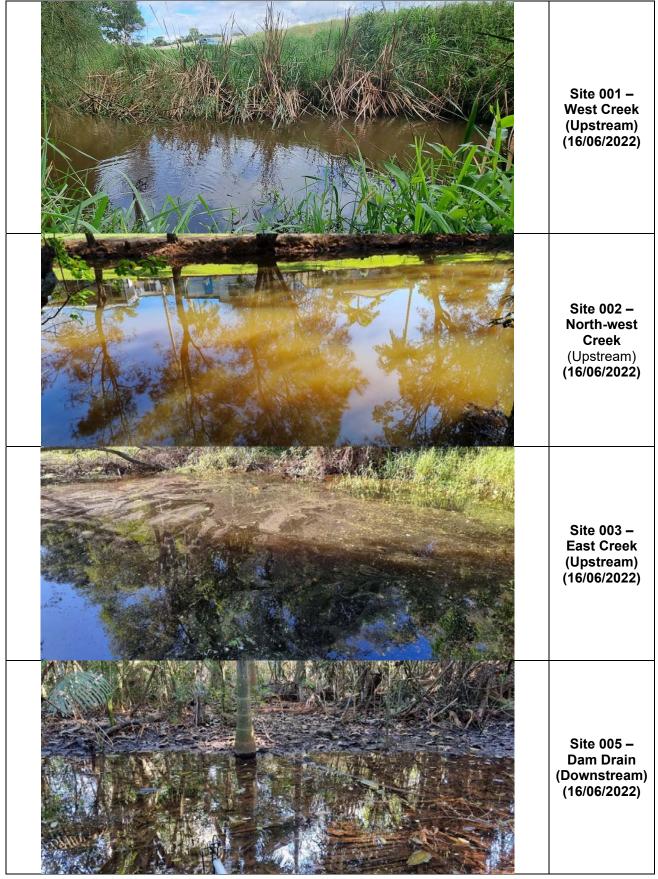
8.0 Quality Assurance and Quality Control


- Parameters analysed in the Trip Blank (013) and Field Blank (014) were below the laboratory detection limits for all analytes.
- The Duplicate Sample (015) was collected at Site 003 and is within acceptable limits for all analytes. The laboratory QA/QC is included in the results in **Appendix F**. All laboratory QA/QC was within acceptance criteria. Based on the above, the results are considered acceptable for the purposes of the project.

9.0 Summary of Results and Recommendations

- The month had low rainfall.
- Nutrients (Ammonia, NOx, TN, TP, and FRP) were high and exceeded some water quality parameters for some sites. This includes upstream and downstream sites in past sampling events. Exceedances in nutrients are therefore considered of natural occurrence.
- Aluminium exceeded WQOs at Site 003 during the month. Metals have been present in upstream and downstream sampling sites in previous sampling rounds. Elevation in metals may be due to pH and redox changes, microbial mineralisation, and naturally occurring sediment transportation. Changes in metal concentrations are also likely following heavy rainfall events.
- Elevated nutrients and metals have been observed at all sampling locations including upstream and downstream sites in previous months and during baseline sampling. Therefore, based on the assessment of the May/June water quality data, the Tweed Valley Hospital Project construction activities are unlikely to be adversely impacting the downstream water quality. As such, the current soil and erosion controls implemented on site are considered to be effective.

Kind regards,


Environmental Engineer & Director

fax: (02) 66-218-123 ABN: 82 106 758 123

Appendix A. Site Photos

Appendix B. Calibration certificate for Xylem YSI multi-parameter probe

EQUIPMENT CERTIFICATION REPORT

PGN9003871 WATER QUALITY METER - MULTIFUNCTION

Plant Number: 1072179

SENSOR	CONCENTRATION	SPAN 1	SPAN 2	TRACEABILITY	PASS	
pН	pH 7.00 / pH 4.00	7.00 pH	4.00 pH	377339 380327	2	
Conductivity	2.76 mS/cm @ 25°C	2.76 mS/cm		377099	Ø	
Dissolved S Oxygen	Sodium Sulphite /	0.0% in Sodium Sulphite	% Saturation in Air	5928	Ø	
ORP	240mV @ 25°C	240mV		7035	7	

Battery Status 95 %	Temperature 21 *C
	Electrodes Cleaned and Checked

Note: Calibration solution traceability information is available upon request.

Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning Fee' \$55.00 (Inc GST) may apply if instrument is returned contaminated.

Checked By: R. Kneebone Date: 25 / 5 / 22 Signed: R

Accessories List:

User's Manual & USB	pH Sensor	Conductivity Sensor
Dissolved Oxygen Sensor with Wetting Cap	Redox (ORP) Sensor with Wetting Cap	Flow Cell 500ml
Comm Cable	Testing Cap	Storage Cap

135 135 | kennards.com.au

Appendix C. Full List of Sampling Analytes

3.7 Proposed Surface Water Quality Sampling Parameters

A summary of the proposed sampling analytes is provided below:

Field

- pH
- Turbidity
- Electrical Conductivity (EC)
- Dissolved Oxygen (DO)
- Temperature
- Oxidation Reduction Potential (ORP)
- Oil and grease

Laboratory

- Total Suspended Solids (TSS)
- Total Dissolved Solids (TDS)
- Major Cations & Hardness
- Ammonia
- Chlorophyll-a
- Filterable Reactive Phosphorus
- Nitrate
- Oxides of Nitrogen
- Total Nitrogen
- Total Phosphorus
- Aluminium (pH > 6.5) filtered
- Arsenic (filtered)
- Boron (filtered)
- Cadmium (filtered)
- Chromium (filtered)
- Copper (filtered)
- Cobalt (filtered)
- Lead (filtered)
- Manganese (filtered)
- Mercury (filtered)

- Nickel (filtered)
- Selenium (filtered)
- Silver (filtered)
- Zinc (filtered)
- Benzene
- Toluene
- Ethylbenzene
- Xylene Total
- Naphthalene
- Total Recoverable Hydrocarbons (TRH)
- Organochlorine Pesticides (OCP)
 - o 4.4'-DDE
 - o 4.4'-DDT
 - o Aldrin
 - g-BHC (Lindane)
 - o Chlordane
 - o Dieldrin
 - Endosulfan
 - o Endrin
 - o Heptachlor
 - Toxaphene
 - Organophosphorus Pesticides (OPP)
 - Azinphos-methyl
 - Chlorpyrifos
 - Demeton-S
 - Diazinon
 - o Dimethoate
 - Fenitrothion
 - Malathion

If a sample returns detectable concentrations of the analytes presented in Table 1, additional analyses may be required to enable comparison against additional trigger criteria or trace potential sources of contaminants. It is cost prohibitive to analyse these parameters unless required.

Table 1 Additional Analysis Requirements

Analyte	Additional Analysis
Total Recoverable Hydrocarbons	TRH Silica-gel Clean-up
Arsenic (filtered)	Arsenic (III) (filtered) Arsenic (V) (filtered)
Chromium (filtered)	Chromium (CrVI) (filtered)

SCOPE OF WORKS TWEED VALLEY HOSPITAL ISSUE NO: A | ISSUE DATE: 11/04/2019 LENDLEASE BUILDINGS BUILDING MANAGEMENT SYSTEM

PAGE 10 OF 11

Lendlease

Appendix D. Chain of Custody Form

ETWROLA	en the se			CUSTO											1	12 Aukle	11LCh	ebree .	Services 6, NSW 2 http://www.	1967 Gadab.com.ga
-	Empl	ENVIE	IOLAB GR	ROUP - Natio	nal pł	tone	numbe	r 130	0 42	4 344	6						h-MPL		taries res, WA.	454
Client: Booteam					Cliest	Proje	ct Name	/ Nun	iber /	Site et	etc (ie report title):					1:085	\$17 250	s/ tabl	#mples	P.48
Contact Persons I	lise Belton		-				NC009	36 - Tv	veed V	altey X	lospita	Proje	ct	_					lab Servi	
Project Mar:					PO No	м			_	_										fs, VC 3135 Perviculations.s.
Samplers							ucts No.				195722	f_low.	1							
Address: 13 Ewin	ng Streat				Date	results	retrice	d i											ibb Servi	
Lisence NSW 242	Lismore NSW 2480						standers Rölle ad							tages	1	1:097	DAD ERC	1/ adv		wirelak concav
Phater	Phote: 02 6621 5123 Mobi						cport for	mati	tates	/ equis	1			-					rea, QLD	4814 evideb.com.au
Empile	and the state of t	a Rezotaan	COST NO.		Lab C		etse							_						
	Testing requirements - C <0.025 mg/L. Silver				Catio	ISI NA	As, B, Co /K/Ca/W retails res	ig. Pilo	ase ho	M Cr6				લ્લ		July 7, 5	7 Wiles	Rd, De	ik Service eviewh, N els@cevi	
	Sample	nformation									Test	s Requi	ired							Comments .
Envirolab Serepie ID	Client Sample ID or information	Depth	Date sampled	Type of sample	TRH/BIERN	Disselved Metals	OC/OP + toxuphere + denetor	TSS	SOT	Calitant + Nardress	Arrosta	Choloophyll-a	Piszaphate (FRP)	Nitrabe	NDK	Tetal N	Total P	Cr64-HOLD	AVIII & V - HOLD	Provide as much information about the sample as you can
1	001 - UŚW	300 mm		Water	Χ.	X	X	X	X	X	X	X	X	х	X	X	X			
2	002 - USNW	150 mm		Water	X	X	X	X	X	X	X	X	X	X	X	X	X		10	
3	003 - DSE	300 mm		Water	X	X	X	X	X	X	X	X	X	X	X	X	X	1		B Changeding
4	005 - Dam Drain	150 mm	É	Water	X	X	X	X	X	X	X	X	X	X	X	X	X	1	T	Ph: (02) 9910 625
5	013	300 mm	1	Water	X	X	X	X	X	X	X	X	X	X	X	X	X		120	\$ 348197
6	014	300 mm		Water	X	X	X	X	X	X	X	X	X	X	X	X	X	1	De:	52-6-22
2	015	300 mm		Water	X	X	X	X	X	X	X	X	X	X	X	X	X	1	Time	Received WD
							1							-				-		al By:
		-			-		-		-					-				-	1.1	250 Arithers
						-									-	-	<u> </u>	-	1	0.
												-				-		1		
																				1
0	Please tick the box	If observ	ed settled	sediment pres	sent	in w	ater sa	mol	as is	to be	inc	luded	f in t	he e	trac	tion	and	or a	nalvs	is
Rolinguished by		Ecotcom		Received by (Com	and the second se			and the second division of the second divisio									b Use	_		
Print Name:	and and here is a second se			Print Name: AP		10	0 01	0			Jobr	umbe	c %	81	97		_	_		ce pack None
-	15/06/2022			Date & Time: 17	6.7	7			ilco			peratu	-		NIC			and the second	other instances in the second	tact / Broken / None
Signature:		-		Signature: -						-				E day	_	12			1/510	

Appendix E. Summary of Lab Results compared to WQOs

		Water (Objec (WQ	tives	Sample Codes							
Ameluta	Linit		Fresh	WC	NWC	EC	DD		013	014	015
Analyte	Unit	Estuary	Water	001	002	003	005		Trip	Field	Duplicate
Total Suspended Solids (TSS)	mg/L	N/A	N/A	6	28	<5	6		<5	<5	<5
Total Dissolved Solids (TDS)	mg/L	N/A	N/A	470	280	140	140		<5	<5	130
		Ma	jor Cati	ons (dis	solved	and Ha	ardnes	s			
Sodium	mg/L	N/A	N/A	40	36	22	17		<0.5	<0.5	21
Potassium	mg/L	N/A	N/A	3	2	2	1		<0.5	<0.5	2
Calcium	mg/L	N/A	N/A	63	30	13	4		<0.5	<0.5	12
Magnesium	mg/L	N/A	N/A	15	9.3	4	4		<0.5	<0.5	4
Hardness mgCa	CO ₃ /L	N/A	N/A	220	110	50	26		<3	<3	46
Nutrients											
Ammonia	mg/L	0.015	0.02	0.048	0.093	0.016	<0.005		<0.005	< 0.005	0.014
Chlorophyll-a	mg/m ³	4	5	<2	<2	<2	<2		<2	<2	<2
Filterable Reactive Phosphorus	mg/L	0.005	0.02	<0.005	<0.005	0.009	<0.005		<0.005	<0.005	0.009
Nitrate	mg/L	N/A	N/A	0.35	1.5	0.14	3.3		0.009	<0.005	0.14
Oxides of Nitrogen	mg/L	0.015	0.040	0.4	1.5	0.1	3.3		0.007	<0.005	0.1
Total Nitrogen	mg/L	0.30	0.35	0.7	1.8	0.6	4.1		<0.1	<0.1	0.6
Total Phosphorus	mg/L	0.030	0.025	0.02	0.02	0.04	<0.02		<0.02	<0.02	0.04
		Me	tals – A	ll metal	s are Di	ssolved	d Metal	s			
Aluminium	µg/L	N/A	55	<10	40	130	20		<10	<10	130
Arsenic	µg/L	N/A	13	<1	<1	1	<1		<1	<1	1
Boron	µg/L	N/A	370	100	100	40	60		<20	<20	40
Cadmium	µg/L	5.5	0.2	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1
Chromium	µg/L	4.4	1.0	<1	<1	<1	<1		<1	<1	<1
Copper	µg/L	1.3	1.4	<1	<1	1	<1		<1	<1	1
Cobalt	µg/L	1.0	N/A	<1	<1	<1	<1		<1	<1	<1
Lead	µg/L	4.4	3.4	<1	<1	<1	<1		<1	<1	1
Manganese	µg/L	N/A	1,900	150	120	22	34		<1	<1	22
Mercury	µg/L	0.4	0.6	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05
Nickel	µg/L	70	11	<1	<1	<1	<1		<1	<1	<1
Selenium	µg/L	N/A	11	<1	<1	<1	<1		<1	<1	<1
Zinc	µg/L	15	8.0	4	3	11	5		<1	<1	11
Silver	µg/L	1.4	0.05	<0.05	<0.05	<0.05	<0.05		0.2	0.2	< 0.05

		Water (Objec (WG	of the second	Sample Codes								
Analyte	Unit	Freezer	Fresh	WC	NWC	EC	DD		013	014	015	
Analyte	Unit	Estuary	Water	001	002	003	005		Trip	Field	Duplicate	
				Hydr	ocarboi	าร						
Toluene	mg/L	0.70	0.95	<1	<1	<1	<1		<1	<1	< <mark>1</mark>	
Ethylbenzene	mg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1	
Xylene	mg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1	
Naphthalene	mg/L	N/A	0.55	<1	<1	<1	<1		<1	<1	<1	
TRH C6 - C10	mg/L	0.07	0.016	<10	<10	<10	<10		<10	<10	<10	
TRH C10 - C16	mg/L	N/A	N/A	<50	<50	<50	<50		<50	<50	<50	
TRH C18 - C34	mg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100	
TRH >C34 - C40	mg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100	
TRH C ₆ -C ₁₀ less BTEX (F1)	mg/L	N/A	N/A	<10	<10	<10	<10		<10	<10	<10	
TRH >C10-C16 less Naphthalene (F2)	mg/L	N/A	N/A	<50	<50	<50	<50		<50	<50	<50	
			Organo	ochlorin	e Pesti	cides (C	DCP)					
4.4'-DDE	µg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
4.4'-DDT	µg/L	N/A	0.01	< 0.006	<0.006	<0.006	< 0.006		< 0.006	<0.006	<0.006	
Aldrin	µg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
g-BHC	µg/L	N/A	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Chlordane	µg/L	N/A	0.08	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Dieldrin	µg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Endosulfan	µg/L	0.01	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Endrin	µg/L	0.02	0.008	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Heptachlor	µg/L	N/A	0.09	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Toxaphene	µg/L	N/A	0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	
		0	rganop	hospho	rus Pes	ticides	(OPP)					
Azinphos- methyl	µg/L	N/A	0.02	<0.02	<0.02	<0.02	<0.02		<0.02	<0.02	<0.02	
Chlorpyriphos	µg/L	0.009	0.01	<0.01	<0.01	< 0.01	<0.01		< 0.01	<0.01	< 0.01	
Demeton-S	µg/L	N/A	N/A	<5	<5	<5	<5		<5	<5	<5	
Diazinon	µg/L	N/A	0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Dimethoate	µg/L	N/A	0.15	<0.15	<0.15	<0.15	<0.15		<0.15	<0.15	<0.15	
Fenitrothion	µg/L	N/A	0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	
Malathion	µg/L	N/A	0.05	<0.05	<0.05	<0.05	<0.05		< 0.05	<0.05	<0.05	

Appendix F. Full Laboratory Results

INTERIM REPORT 298197

Client Details	
Client	Ecoteam
Attention	
Address	13 Ewing Street, Lismore, NSW, 2480

Sample Details	
Your Reference	SMC009.36 - Tweed Valley Hospital Project
Number of Samples	7 Water
Date samples received	17/06/2022
Date completed instructions received	17/06/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	24/06/2022				
Interim Report Date	24/06/2022				
NATA Accreditation Number 2901	NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with IS	0/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

vTRH(C6-C10)/BTEXN in Water						
Our Reference		298197-1	298197-2	298197-3	298197-4	298197-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	623	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Date analysed	20	21/06/2022	21/06/2022	21/06/2022	21/06/2022	21/06/2022
TRH C ₈ - C ₉	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	88	88	88	87	85
Surrogate toluene-d8	%	98	100	97	97	95
Surrogate 4-BFB	%	98	98	97	97	100

vTRH(C6-C10)/BTEXN in Water			
Our Reference		298197-6	298197-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	6 <u>1</u> 15	20/06/2022	20/06/2022
Date analysed	1 <u>2</u> 0	21/06/2022	21/06/2022
TRH C ₈ - C ₉	µg/L	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10
TRH Ce - C10 less BTEX (F1)	µg/L	<10	<10
Benzene	µg/L	<1	<1
Toluene	µg/L	<1	<1
Ethylbenzene	µg/L	<1	<1
m+p-xylene	µg/L	<2	<2
o-xylene	µg/L	<1	<1
Naphthalene	µg/L	<1	<1
Surrogate Dibromofluoromethane	%	85	90
Surrogate toluene-d8	%	98	97
Surrogate 4-BFB	%	98	95

svTRH (C10-C40) in Water	4		<i></i>	P	<u></u>	
Our Reference		298197-1	298197-2	298197-3	298197-4	298197-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	121	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Date analysed	-	21/06/2022	21/06/2022	21/06/2022	21/06/2022	21/06/2022
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50	<50	<50
TRH C15 - C28	µg/L	<100	<100	<100	<100	<100
TRH C29 - C36	µg/L	<100	<100	<100	<100	<100
TRH >C10 - C18	µg/L	<50	<50	<50	<50	<50
TRH >C10 - C18 less Naphthalene (F2)	µg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	91	91	99	91	100

svTRH (C10-C40) in Water	44 4	XV:	-
Our Reference		298197-6	298197-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	2002	20/06/2022	20/06/2022
Date analysed		21/06/2022	21/06/2022
TRH C ₁₀ - C ₁₄	µg/L	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100
TRH >C10 - C16	µg/L	<50	<50
TRH >C10 - C18 less Naphthalene (F2)	µg/L	<50	<50
TRH >C18 - C34	µg/L	<100	<100
TRH >C34 - C40	µg/L	<100	<100
Surrogate o-Terphenyl	%	95	98

OCPs in Water - Low Level				<i>1</i> 2		
Our Reference		298197-1	298197-2	298197-3	298197-4	298197-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	121	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Date analysed	(<u> </u>)	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
alpha-BHC	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
НСВ	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
beta-BHC	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aldrin	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan I	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDE	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Dieldrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan II	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDD	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin Aldehyde	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDT	µg/L	<0.006	<0.006	<0.006	<0.006	<0.006
Endosulfan Sulphate	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Methoxychlor	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate TCMX	%	83	86	93	87	90

OCPs in Water - Low Level			
Our Reference		298197-6	298197-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	3530	20/06/2022	20/06/2022
Date analysed		20/06/2022	20/06/2022
alpha-BHC	µg/L	<0.01	<0.01
НСВ	µg/L	<0.01	<0.01
beta-BHC	µg/L	<0.01	<0.01
gamma-BHC	µg/L	<0.01	<0.01
Heptachlor	µg/L	<0.01	<0.01
delta-BHC	µg/L	<0.01	<0.01
Aldrin	µg/L	<0.01	<0.01
Heptachlor Epoxide	µg/L	<0.01	<0.01
gamma-Chlordane	µg/L	<0.01	<0.01
alpha-Chlordane	µg/L	<0.01	<0.01
Endosulfan I	µg/L	<0.01	<0.01
pp-DDE	µg/L	<0.01	<0.01
Dieldrin	µg/L	<0.01	<0.01
Endrin	µg/L	<0.01	<0.01
Endosulfan II	µg/L	<0.01	<0.01
pp-DDD	µg/L	<0.01	<0.01
Endrin Aldehyde	µg/L	<0.01	<0.01
pp-DDT	µg/L	<0.006	<0.006
Endosulfan Sulphate	µg/L	<0.01	<0.01
Methoxychlor	μg/L	<0.01	<0.01
Surrogate TCMX	%	86	90

Our Reference		298197-1	298197-2	298197-3	298197-4	298197-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted		20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Date analysed	1 <u>-</u> 1	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Dichlorovos	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	µg/L	<0.15	<0.15	<0.15	<0.15	<0.15
Diazinon	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl Parathion	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyriphos	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Parathion	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Bromophos ethyl	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate TCMX	%	83	86	93	87	90

OP in water LL ANZECCF/ADWG			
Our Reference		298197-6	298197-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	170	20/06/2022	20/06/2022
Date analysed	-	20/06/2022	20/06/2022
Dichlorovos	µg/L	<0.2	<0.2
Dimethoate	µg/L	<0.15	<0.15
Diazinon	µg/L	<0.01	<0.01
Chlorpyriphos-methyl	µg/L	<0.2	<0.2
Methyl Parathion	µg/L	<0.2	<0.2
Ronnel	µg/L	<0.2	<0.2
Fenitrothion	µg/L	<0.2	<0.2
Malathion	µg/L	<0.05	<0.05
Chlorpyriphos	µg/L	<0.01	<0.01
Parathion	µg/L	<0.01	<0.01
Bromophos ethyl	µg/L	<0.2	<0.2
Ethion	µg/L	<0.2	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.02	<0.02
Surrogate TCMX	%	86	90

Miscellaneous Organics - water	8		<i></i>	1.		
Our Reference		298197-1	298197-2	298197-3	298197-4	298197-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	141	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Date analysed		23/06/2022	23/06/2022	23/06/2022	23/06/2022	23/06/2022
Toxaphene*	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Demeton-O	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Demeton-S	µg/L	<5	<5	<5	<5	<5
Surrogate p-Terphenyl-d14	%	79	80	84	86	83

Miscellaneous Organics - water			
Our Reference		298197-6	298197-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	(=)	20/06/2022	20/06/2022
Date analysed	3 2 0	23/06/2022	23/06/2022
Toxaphene*	µg/L	<0.2	<0.2
Demeton-O	µg/L	<0.2	<0.2
Demeton-S	µg/L	<5	<5
Surrogate p-Terphenyl-d14	%	86	83

HM in water - dissolved	4	3		p.		
Our Reference		298197-1	298197-2	298197-3	298197-4	298197-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	120	22/06/2022	22/06/2022	22/06/2022	22/06/2022	22/06/2022
Date analysed	- <u>-</u>	22/06/2022	22/06/2022	22/06/2022	22/06/2022	22/06/2022
Aluminium-Dissolved	µg/L	<10	40	130	20	<10
Arsenic-Dissolved	µg/L	<1	<1	1	<1	<1
Boron-Dissolved	µg/L	100	100	40	60	<20
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	µg/L	<1	<1	1	<1	<1
Cobalt-Dissolved	µg/L	<1	<1	<1	<1	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Manganese-Dissolved	µg/L	150	120	22	34	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	µg/L	<1	<1	<1	<1	<1
Silver-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	0.2
Zinc-Dissolved	µg/L	4	3	11	5	<1

HM in water - dissolved			
Our Reference		298197-6	298197-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	5 81	22/06/2022	22/06/2022
Date analysed	-	22/06/2022	22/06/2022
Aluminium-Dissolved	μg/L	<10	130
Arsenic-Dissolved	μg/L	<1	1
Boron-Dissolved	μg/L	<20	40
Cadmium-Dissolved	µg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	μg/L	<1	1
Cobalt-Dissolved	μg/L	<1	<1
Lead-Dissolved	µg/L	<1	1
Manganese-Dissolved	μg/L	<1	22
Mercury-Dissolved	μg/L	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1
Selenium-Dissolved	μg/L	<1	<1
Silver-Dissolved	μg/L	0.2	<0.05
Zinc-Dissolved	µg/L	<1	11

Metals in Waters - Acid extractab	le	3	4	6	<i>a</i>	
Our Reference		298197-1	298197-2	298197-3	298197-4	298197-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	121	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Date analysed	124	20/06/2022	20/06/2022	20/06/2022	20/06/2022	20/06/2022
Phosphorus - Total	mg/L	0.02	0.02	0.04	<0.02	<0.02

Metals in Waters - Acid extractable			
Our Reference		298197-6	298197-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	(=)	20/06/2022	20/06/2022
Date analysed	-	20/06/2022	20/06/2022
Phosphorus - Total	mg/L	<0.02	0.04

Cations in water Dissolved	8		<i>11</i>	5			
Our Reference		298197-1	298197-2	298197-3	298197-4	298197-5	
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013	
Depth		300	150	300	150	300	
Type of sample		Water	Water	Water	Water	Water	
Date digested	te digested -		21/06/2022	21/06/2022	21/06/2022	21/06/2022	
Date analysed		21/06/2022	21/06/2022	21/06/2022	21/06/2022	21/06/2022	
Sodium - Dissolved	mg/L	40	36	22	17	<0.5	
Potassium - Dissolved	mg/L	3	2	2	1	<0.5	
Calcium - Dissolved	mg/L	63	30	13	4	<0.5	
Magnesium - Dissolved	mg/L	15	9.3	4	4	<0.5	
Hardness	mgCaCO 3 /L	220	110	50	26	<3	

Cations in water Dissolved			
Our Reference		298197-6	298197-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date digested	120	21/06/2022	21/06/2022
Date analysed	-	21/06/2022	21/06/2022
Sodium - Dissolved	mg/L	<0.5	21
Potassium - Dissolved	mg/L	<0.5	2
Calcium - Dissolved	mg/L	<0.5	12
Magnesium - Dissolved	mg/L	<0.5	4
Hardness	mgCaCO 3 /L	<3	46

Miscellaneous Inorganics	<u>.</u>			1		
Our Reference		298197-1	298197-2	298197-3	298197-4	298197-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	141	17/06/2022	17/06/2022	17/06/2022	17/06/2022	17/06/2022
Date analysed	-	17/06/2022	17/06/2022	17/06/2022	17/06/2022	17/06/2022
Total Suspended Solids	mg/L	6	28	<5	6	<5
Total Dissolved Solids (grav)	mg/L	470	280	140	140	<5
Ammonia as N in water	mg/L	0.048	0.093	0.016	<0.005	<0.005
Chlorophyll a	mg/m ³					
Phosphate as P in water	mg/L	<0.005	<0.005	0.009	<0.005	<0.005
Nitrate as N in water	mg/L	0.35	1.5	0.14	3.3	0.009
NOx as N in water	mg/L	0.4	1.5	0.1	3.3	0.007
Total Nitrogen in water	mg/L	0.7	1.8	0.6	4.1	<0.1

Miscellaneous Inorganics			
Our Reference		298197-6	298197-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	- 6552	17/06/2022	17/06/2022
Date analysed	-	17/06/2022	17/06/2022
Total Suspended Solids	mg/L	<5	<5
Total Dissolved Solids (grav)	mg/L	<5	130
Ammonia as N in water	mg/L	<0.005	0.014
Chlorophyll a	mg/m ³		
Phosphate as P in water	mg/L	<0.005	0.009
Nitrate as N in water	mg/L	<0.005	0.14
NOx as N in water	mg/L	<0.005	0.1
Total Nitrogen in water	mg/L	<0.1	0.6

Method ID	Methodology Summary
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
INORG-119	Chlorophyll A based on APHA 10200 H latest edition.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONT	ROL: vTRH((C6-C10)/B	TEXN in Water			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	1.00			20/06/2022	[NT]		[NT]	[NT]	20/06/2022		
Date analysed	-			21/06/2022	(NT)		[N7]	INT	21/06/2022		
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NI]	[NT]	95		
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	(NT)		[NT]	INT	95		
Benzene	µg/L	1	Org-023	<1	INT		[NT]	[NT]	97		
Toluene	µg/L	1	Org-023	<1	(NT)		[617]	(NT)	96		
Ethylbenzene	µg/L	1	Org-023	<1	(NT)		[NT]	[NT]	95		
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	INT	94		
o-xylene	µg/L	1	Org-023	<1	(NT)		[NT]	[NT]	94		
Naphthalene	µg/L	1	Org-023	<1	[134]		[NT]	[NT]	[114]		
Surrogate Dibromofluoromethane	%		Org-023	82	[ŇT]		[NT]	[NT]	91		
Surrogate toluene-d8	%		Org-023	97	[NT]		[NT]	INT	99		
Surrogate 4-BFB	%		Org-023	97	(NT)		[NT]	[NT]	97		

QUALITY	CONTROL: svT	RH (C10-C	40) in Water			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	1252			20/06/2022	1	20/06/2022	20/06/2022		20/06/2022	
Date analysed	-			21/06/2022	1	21/06/2022	21/06/2022		21/06/2022	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	1	<50	<50	0	103	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	1	<100	<100	0	104	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	1	<100	<100	0	125	
TRH >C10 - C16	µg/L	50	Org-020	<50	1	<50	<50	0	103	
TRH >C16 - C34	µg/L	100	Org-020	<100	1	<100	<100	0	104	
TRH >C34 - C40	µg/L	100	Org-020	<100	1	<100	<100	0	125	
Surrogate o-Terphenyl	%		Org-020	97	1	91	101	10	93	

QUALITY	Y CONTROL: OCI	^o s in Wate	r - Low Level			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298197-2	
Date extracted	-			20/06/2022	1	20/06/2022	20/06/2022		20/06/2022	20/06/2022	
Date analysed	-			20/06/2022	1	20/06/2022	20/06/2022		20/06/2022	20/06/2022	
alpha-BHC	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	104	106	
НСВ	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	[NT]	[NT]	
beta-BHC	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	106	106	
gamma-BHC	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	[N7]	[N1]	
Heptachlor	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	101	99	
delta-BHC	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	[NT]	[NT]	
Aldrin	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	113	107	
Heptachlor Epoxide	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	102	106	
gamma-Chlordane	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	[NT]	[NT]	
alpha-Chlordane	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	[NI]	[NT]	
Endosulfan I	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	[NT]	[NT]	
pp-DDE	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	105	98	
Dieldrin	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	112	104	
Endrin	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	102	98	
Endosulfan II	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	[NT]	[NT]	
pp-DDD	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	110	100	
Endrin Aldehyde	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	[NT]	[NT]	
pp-DDT	µg/L	0.006	Org-022	<0.006	1	<0.006	<0.006	0	[N7]	[NT]	
Endosulfan Sulphate	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	106	100	
Methoxychlor	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	99	1	83	91	9	95	90	

QUALITY CON	NTROL: OP in water LL ANZECCF/ADWG					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298197-2	
Date extracted	1271			20/06/2022	1	20/06/2022	20/06/2022		20/06/2022	20/06/2022	
Date analysed	-			20/06/2022	1	20/06/2022	20/06/2022		20/06/2022	20/06/2022	
Dichlorovos	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	103	99	
Dime hoate	µg/L	0.15	Org-022/025	<0.15	1	<0.15	<0.15	0	[NT]	[NT]	
Diazinon	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[N7]	[NT]	
Methyl Para hion	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Ronnel	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	97	99	
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	109	107	
Malathion	µg/L	0.05	Org-022/025	<0.05	1	<0.05	<0 05	0	135	132	
Chlorpyriphos	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	116	112	
Parathion	µg/L	0.01	Org-022/025	<0.01	1	<0.01	<0 01	0	103	99	
Bromophos ethyl	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Ethion	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	111	107	
Azinphos-methyl (Guthion)	µg/L	0.02	Org-022/025	<0.02	1	<0.02	<0 02	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	99	1	83	91	9	95	90	

QUALITY CON		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298197-2
Date prepared	1200			20/06/2022	1	20/06/2022	20/06/2022		20/06/2022	20/06/2022
Date analysed	-			23/06/2022	1	23/06/2022	23/06/2022		23/06/2022	23/06/2022
Toxaphene*	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Demeton-O	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	(NT)
Demeton-S	µg/L	5	Org-022/025	<5	1	<5	<5	0	[NT]	[NT]
Surrogate p-Terphenyl-d ₁₄	%		Org-022/025	108	1	79	84	6	102	78

QUALIT	Y CONTROL: HI	M in water	- dissolved			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]	
Date prepared	120			22/06/2022	1	22/06/2022	22/06/2022		22/06/2022		
Date analysed	-			22/06/2022	1	22/06/2022	22/06/2022		22/06/2022		
Aluminium-Dissolved	µg/L	10	Metals-022	<10	1	<10	<10	0	119		
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	98		
Boron-Dissolved	µg/L	20	Metals-022	<20	1	100	100	0	116		
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	104		
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	99		
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	99		
Cobalt-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	95		
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	106		
Manganese-Dissolved	µg/L	1	Metals-022	<1	1	150	150	0	100		
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0 05	0	107		
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	98		
Selenium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	98		
Silver-Dissolved	µg/L	0.05	Metals-022	<0.05	1	<0.05	<0 05	0	80		
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	4	4	0	98		

QUALITY CONTRO			Du	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298197-2
Date prepared	1272			20/06/2022	1	20/06/2022	20/06/2022		20/06/2022	20/06/2022
Date analysed	-			20/06/2022	1	20/06/2022	20/06/2022		20/06/2022	20/06/2022
Phosphorus - Total	mg/L	0.02	Metals-020	<0.02	1	0.02	0.02	0	95	104

QUALITY CONTROL: Cations in water Dissolved							Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298197-2		
Date digested				21/06/2022	1	21/06/2022	21/06/2022		21/06/2022	21/06/2022		
Date analysed	-			21/06/2022	1	21/06/2022	21/06/2022		21/06/2022	21/06/2022		
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	40	40	0	93	100		
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	3	3	0	97	87		
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	63	64	2	<mark>115</mark>	96		
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	15	15	0	109	97		
Hardness	mgCaCO 3/L	3	Metals-020	[NT]	1	220	220	0	[NT]	[NT]		

QUALITY C		Du	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	298197-2
Date prepared	1200			17/06/2022	1	17/06/2022	17/06/2022		17/06/2022	17/06/2022
Date analysed	-			17/06/2022	1	17/06/2022	17/06/2022		17/06/2022	17/06/2022
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	6	5	18	110	[TM]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	470	430	9	105	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.048	0.045	6	98	97
Chlorophyll a	mg/m ³	2	INORG-119	<2	1					
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	<0.005	0	97	92
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.35	0.35	0	102	89
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.4	0.3	29	102	89
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.7	0.7	0	90	106

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Contro	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Miscellaneous Organics - water - The recovery of LCS and matrix spike cannot be reported due to the fact they are not in the list of analytes requested. However, the non-reported analytes within the LCS and matrix spike had acceptable recoveries.