

Friday 12 August 2022

Environmental Engineer & Director

mob: office: (02) 66-215-123

fax: (02) 66-218-123 ABN: 82 106 758 123

To:
Site Engineer, Lendlease
Tweed Valley Hospital Project

Re: Surface Water Quality Monitoring Results and Report for the Tweed Valley Hospital Project
Reporting period: 16 June 2022 to 18 July 2022

1.0 INTRODUCTION

Ecoteam is engaged to undertake monthly and event-based surface water monitoring on behalf of Lendlease Building, as part of the main works for the Tweed Valley Hospital Project. This report presents results from the 37th round of monthly sampling. This report satisfies the requirements of the SSD2 conditions. No controlled or uncontrolled releases from the sediment basins occurred during the reporting period.

2.0 PROJECT AIMS AND SAMPLING OBJECTIVES

The surface water monitoring objectives for the site are to detect changes during construction in receiving water quality resulting from the project. Stormwater discharges potentially contain increased sediment loads, nutrients, total and dissolved metals, hydrocarbons, or other contaminants such as pesticides. Baseline water quality data was performed on 19 and 26 November and 19 December 2018 to record water quality conditions under the existing land use prior to construction (Lendlease Building, 2019).

3.0 WEATHER CONDITIONS

Total rainfall in the period prior to sampling (16 June 2022 to 18 July 2022) was 108.7 mm with the highest 24-hour rainfall occurring on 2 July, being 32.8 mm (Kingscliff BOM Station 058137).

4.0 SAMPLING LOCATIONS

Samples were collected from four of the five monthly sampling Sites (001 – 003 and 005). Site 004 has been infilled and has been removed from ongoing sampling rounds. Control samples were also collected and analysed (013 – 015). Sample codes and corresponding sampling locations are shown in **Table 1** and **Figure 1**. Site photos taken on the day of sampling are included in **Appendix A**. During sampling, Site 002 was noted to be flowing South. Therefore, Site 002 will be assessed as an upstream sample site.

Table 1. Monthly sampling sites, control samples, sample codes, and applicable WQOs.

Sample Codes	Sampling Site Name	Short Name	WQOs
001	West Creek (Downstream)	WC	Estuarine
002	North West Creek (Variable)	NWC	Estuarine
003	East Creek (Upstream)	EC	Freshwater
004	Dam (Downstream)	Dam	Freshwater
005	Dam Drain (Downstream)	DD	Freshwater
013	Trip Blank	Trip	NA
014	Field Blank	Field	NA
015	Field Duplicate	Duplicate	NA

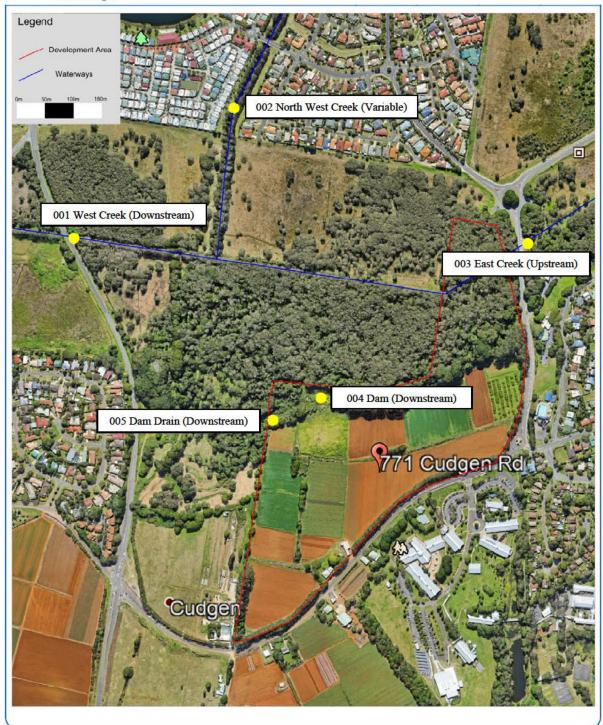


Figure 1. Map of monthly sampling sites (Source: Google Earth).

5.0 SAMPLING METHODOLOGY `

Sampling was undertaken by Jacob on Thursday 19 July 2022. The weather was fine and sunny. In situ, physico-chemical measurements were collected using a Xylem YSI multi-parameter probe, and Turbidity was measured using a Turbimeter Plus turbidity meter. Oil and grease were visually assessed. The calibration certificate for the Xylem YSI is included in **Appendix B**. The Turbimeter Plus is calibrated before each sampling round. Water quality samples were collected at 300 mm below the surface where possible. Samples were collected from the bank using an extension pole.

Samples were filtered and preserved on-site where necessary, stored on ice, and couriered overnight to the NATA-accredited Envirolab in Sydney. Trip blank samples (013) were sent from Envirolab and transported to all sites, then returned to Envirolab with the field samples. The field blank samples (014) were assessed at Site 005. Duplicate samples (015) were collected at Site 002 and were filtered and preserved as required. Field and trip blanks were filled with deionized water and do not represent water quality from the site. A full list of analytes for the project is included in **Appendix C**.

6.0 ASSESSMENT CRITERIA

Water quality results were compared against the Water Quality Objectives (WQO) in the following guidelines.

- NSW Water Quality Objectives for the Tweed River Catchment for Aquatic Ecosystems (Tweed 2006) - Trigger criteria for estuaries.
- Australian and New Zealand guidelines for fresh and marine water quality (ANZECC 2000) –
 Trigger values for freshwater (level of protection 95% species).

7.0 RESULTS

7.1 Physico-chemical Results

In situ, physico-chemical sampling results with comparison to WQOs are shown in **Table 2**. There were no surface sheens visible at any sites, therefore oil and grease were not present.

Table 2. Results of physico-chemical parameters. The results above guidelines are highlighted.

			Quality es (WQOs)	s	ample Cod	es and Res	ults
Analyte	Units	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Up)	EC 003 (Up)	DD 005 (Down)
рН		7.0-8.5	6.5-8.5	7.46	6.85	6.49	6.28
Turbidity	NTU	0.5-10	6.0-50	14.8	16.7	1.51	0.93
Electrical Conductivity (EC)	μS/cm	125- 2,200	125- 2,200	1092	674	177.7	155.8
Dissolved Oxygen (DO)	% Saturation	80-110	85-110	42.1	37.5	42.1	19.0
Temperature	°C	N/A	N/A	14.8	15.2	15.0	17.1
Oxidation- Reduction Potential (ORP)	mV	N/A	N/A	150.9	149.1	159.3	152.1

When compared to the WQOs for freshwater and estuaries:

- pH was outside of the WQO ranges at sample Sites 002, 003, and 005 this sampling round.
- Turbidity was outside of the WQO ranges at all sample sites this sampling round.
- EC was within the WQO ranges at all sampling sites this sampling round.
- DO concentrations were outside of the expected range at all sampling sites this sampling round. DO
 was outside the range at comparison sites in background sampling.

7.2 Laboratory Results

Ammonia, Chlorophyll-a, Filterable Reactive Phosphorous (FRP), Oxides of Nitrogen (NOx), Total Nitrogen, and Total Phosphorus (TP) were above the WQOs for some sample sites. Aluminium was also outside WQOs. Parameters that exceeded the WQOs are shown in **Table 3**.

The chain of custody form is included in **Appendix D**. A summary of all lab results with comparison to WQOs is included as **Appendix E**. A full copy of the laboratory results is included as **Appendix F**.

Table 3. Parameters in exceedance of the trigger criteria for sampling conducted. Results above guidelines are highlighted.

		Water (Object (WQ	tives							
Analyte	Unit	Estuary	Fresh Water	WC 001 (Down)	NWC 002 (Down)	EC 003 (Up)	DD 005 (Down)	013 Trip	014 Field	015 Duplicate
Ammonia	mg/L	0.015	0.02	0.10	0.21	0.018	0.006	<0.005	<0.005	0.23
Chlorophyll-a	mg/m³	4	5	7	2	<2	<2	<2	<2	3
Filterable Reactive Phosphorus	mg/L	0.005	0.02	<0.005	<0.005	0.03	<0.005	<0.005	<0.005	<0.005
Oxides of Nitrogen	mg/L	0.015	0.040	0.3	0.65	0.07	3.0	<0.005	<0.005	0.67
Total Nitrogen	mg/L	0.30	0.35	0.9	1.3	0.6	3.6	<0.1	<0.1	1.4
Total Phosphorus	mg/L	0.030	0.025	0.02	0.03	0.07	0.03	<0.02	<0.02	0.03
Aluminium	μg/L	N/A	55	10	50	170	20	<10	<10	50

When compared to the WQOs for Freshwater and Estuaries:

- Ammonia was above the WQOs sampling Sites 001 and 002 this sampling round. Ammonia was above the WQOs at comparison sites in background sampling. Ammonia has increased at all sites compared to the previous month.
- Chlorophyll-a was above the WQOs at Site 001 this sampling round. Chlorophyll-a results were varied across comparison sites in background sampling. Chlorophyll-a has increased at Sites 001 and 002 and remained the same at Sites 003 and 005.
- FRP was above the WQOs at Site 003 this sampling round. FRP concentrations have increased at Site 003 and remained the same at Sites 001, 002 and 005 when compared to last month. FRP results varied across comparison sites in background sampling though were lowest at Sites 001 and 005.

- NOx was above the WQOs criteria at all sites this sampling round. NOx has decreased at all sites
 when compared to the previous month.
- TN was above the WQOs criteria at all sites this sampling round. TN has decreased at Sites 002 and
 005, increased at Site 001 and remained the same at 003 when compared to last month. TN was
 above the WQOs at comparison sites in baseline sampling.
- TP was above the WQOs at Sites 002, 003 and 005 this sampling round. TP has increased at Sites 002, 003, and 005 and remained the same at Site 001 when compared to the previous month. TP was above the WQOs at comparison sites in baseline sampling.
- Aluminium was above the WQO at Site 003. This is similar to the previous month. Aluminium has
 increased at Site 001, 002 and 003 and remained the same at Site 005 this sampling round when
 compared to last month. Aluminium has been observed at both upstream and downstream sampling
 sites during past sampling rounds.
- All other metals were within estuarine and freshwater criteria this month.
- Demeton was analysed and returned non-detectable results.
- TRH (C₁₀-C₄₀) was not detected at any sample site.

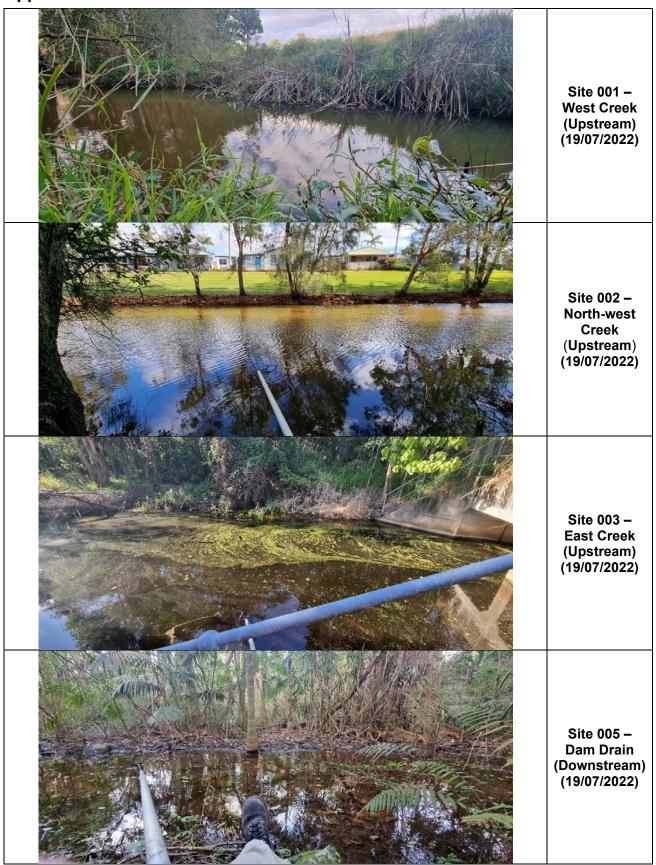
8.0 Quality Assurance and Quality Control

- Parameters analysed in the Trip Blank (013) and Field Blank (014) were below the laboratory detection limits for all analytes.
- The Duplicate Sample (015) was collected at Site 002 and is within acceptable limits for all analytes.
 The laboratory QA/QC is included in the results in Appendix F. All laboratory QA/QC was within acceptance criteria. Based on the above, the results are considered acceptable for the purposes of the project.

9.0 Summary of Results and Recommendations

- The month had low to moderate rainfall.
- Nutrients (Ammonia, NOx, TN, TP, and FRP) were high and exceeded some water quality parameters
 for some sites. This includes upstream and downstream sites in past sampling events. Exceedances
 in nutrients are therefore considered of natural occurrence.
- Aluminium exceeded WQOs at Site 003 during the month. Metals have been present in upstream
 and downstream sampling sites in previous sampling rounds. Elevation in metals may be due to pH
 and redox changes, microbial mineralisation, and naturally occurring sediment transportation.
 Changes in metal concentrations are also likely following heavy rainfall events.
- Elevated nutrients and metals have been observed at all sampling locations including upstream and
 downstream sites in previous months and during baseline sampling. Therefore, based on the
 assessment of the June/July water quality data, the Tweed Valley Hospital Project construction
 activities are unlikely to be adversely impacting the downstream water quality. As such, the current
 soil and erosion controls implemented on site are considered to be effective.

Kind regards,


Environmental Engineer & Director

mob:

office: (02) 66-215-123 fax: (02) 66-218-123 ABN: 82 106 758 123

Appendix A. Site Photos

Appendix B. Calibration certificate for Xylem YSI multi-parameter probe

EQUIPMENT CERTIFICATION REPORT

PGN9003871 WATER QUALITY METER - MULTIFUNCTION

Plant Number	1072178								
SENSOR	CONCENTRATION	SPAN 1	SPAN 2	TRACEABILITY	PASS				
рН	pH 7.00 / pH 4.00	7.00 pH	4.00 pH	377339 380327					
Conductivity	2.76 mS/cm @ 25°C	2.76 mS/cm		377099					
Dissolved Oxygen	Sodium Sulphite / Air	0.0% in Sodium Sulphite	% Saturation in Air	5928	I				
ORP	240mV @ 25°C	240mV	-	7035	4				
Battery S	tatus <u>75</u> 9	6	Temperature _ Electrodes Clea	21 °C					
Note: Calibration solution traceability information is available upon request. Please clean/decontaminate instrument and accessories before returning. A minimum 'Cleaning F \$55.00 (Inc GST) may apply if instrument is returned contaminated. Checked By: R. Krebore Date: 14/7/22 Signed:									
User's N	Manual & USB	pH Sensor	Sensor Conductivity Sensor						
Dissolved Oxyge	n Sensor with Wetting Cap	Redox (ORP) Sensor with							

Testing Cap

Comm Cable

135 135 | kennards.com.au

Storage Cap

Appendix C. Full List of Sampling Analytes

3.7 Proposed Surface Water Quality Sampling Parameters

A summary of the proposed sampling analytes is provided below:

Field

- pH
- Turbidity
- Electrical Conductivity (EC)
- Dissolved Oxygen (DO)
- Temperature
- Oxidation Reduction Potential (ORP)
- Oil and grease

Laboratory

- Total Suspended Solids (TSS)
- Total Dissolved Solids (TDS)
- Major Cations & Hardness
- Ammonia
- Chlorophyll-a
- Filterable Reactive Phosphorus
- Nitrate
- Oxides of Nitrogen
- Total Nitrogen
- Total Phosphorus
- Aluminium (pH > 6.5) filtered
- Arsenic (filtered)
- Boron (filtered)
- Cadmium (filtered)
- Chromium (filtered)
- Copper (filtered)
- Cobalt (filtered)Lead (filtered)
- Manganese (filtered)
- Mercury (filtered)

- Nickel (filtered)
- Selenium (filtered)
- · Silver (filtered)
- Zinc (filtered)
- Benzene
- Toluene
- Ethylbenzene
- Xylene Total
- Naphthalene
- Total Recoverable Hydrocarbons (TRH)
- · Organochlorine Pesticides (OCP)
 - o 4.4'-DDE
 - 4.4'-DDT
 - o Aldrin
 - o g-BHC (Lindane)
 - Chlordane
 - Dieldrin
 - Endosulfan
 - o Endrin
 - Heptachlor
 - Toxaphene
- Organophosphorus Pesticides (OPP)
 - Azinphos-methyl
 - Chlorpyrifos
 - o Demeton-S
 - Diazinon
 - DimethoateFenitrothion
 - Malathion

If a sample returns detectable concentrations of the analytes presented in Table 1, additional analyses may be required to enable comparison against additional trigger criteria or trace potential sources of contaminants. It is cost prohibitive to analyse these parameters unless required.

Table 1 Additional Analysis Requirements

Analyte	Additional Analysis
Total Recoverable Hydrocarbons	TRH Silica-gel Clean-up
Arsenic (filtered)	Arsenic (III) (filtered) Arsenic (V) (filtered)
Chromium (filtered)	Chromium (CrVI) (filtered)

Appendix D. Chain of Custody Form

[Copyright and C	onfidential]	СНА	CHAIN OF CUSTODY - Client Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph: 02 9910 6200 / sydney@envirolab.com.au																		
EŃVIROLA		ENI/TE	OLAR CE	ROUP - Natio				4 20							l '		5 MPL I			Vitolab.com.au	
		EIAATE	COLAB GR	Natio	$\overline{}$	_				_					Ī	6-18 Ha	yden Cr 17 2505	t, Myan	ee, WA		
Client: Ecoteam					Client	-	ct Name	-	-		•	-	-						•		
Contact Person: I					DO 11		MC009,3	37 - TU	reed V	alley H	ospita	Proje	ct				<u>ne Lab</u> - irch Driv			ices . ith, VIC 3136	
Project Mgr:					PO No							0.0								@envirolab.com.au	
Sampler: 366	- storet						uote No. require				195122	8_Rev	1		,	delaide	Office -	Enviro	ab Serv	ices	
Address: 13 Ewin	•			7a The Parade, Norwood, SA 5067 Or choose: standard / same day / 1 day / 2 day / 3 day Ph: 08 7087 6800 / adelaide@envirolab.com						167											
Lismore NSW 24	50						lab in adv							harges							
					apply												Office -				
Phone:	02 6621 5123	Mob:			_		eport for	mat: e	esdat /	equis	/									envirolab.com.au	
Email:						omme				nh							Office - E				
l	Testing requirements - Ch	-lorophyll-	<4 mg/m3 T	otal Phosphorus			As, B, Cd /K/Ca/M							itia1						NT 0820 virolab.com.au	
}							etals res					,			ľ	11. 00 0	,0, 1201	, ,		inomo.com.au	
<0.025 mg/L, Silver <0.05 ug/L, Low level OCPs and OPPs dissolved metals results are back. Sample information Tests Required Comments																					
Envirolab Sample ID	Client Sample ID or information	Depth Date sampled Type of Hatals N - HOLD A - H							Provide às ಮಳನನಿ information ಹರಿಂಬಕೆ ಕೇe sample a ಪ್ರಿಳಂಬ cಪಿತ												
	001 - USW	300 mm	19-Jul	Water	Х	X	Х	Х	Х	X	Х	x	X	Х	Х	Х	Х	-	<u> </u>	Farmulat 0	rvices
2	002 - USNW	150 mm	19-Jul	Water	Ιŵ	x	Ŷ	Ŷ	- ^	x	 	x	x	x	x	x	X	\vdash	 	Chatswood NS	
2	002 - 03/W	300 mm	19-Jul	Water	x	x	x	x	X	x	x	x	Ŷ	Ŷ	X	x	X	├─	 	Ph: (02) 991	06202
4	005 - Dam Drain	150 mm		Water	x	x	X	x	X	x	X	x	x	x	X	x	X		+-	105 NO: 138 3008	۳/ آ.
5		300 mm		Water	x	x	X	X	X	x	X	_	X	X	X	x	X	\vdash	\vdash	Date Received: 20/0	0 6
6	013				_		X					X	_					1-	-	Through the second	7/22
-	014	300 mm	19-Jul	Water	X	X		X	X	X	X	X	X	X	X	X	X	\vdash	₩	Received By: 5104	Ö
7	015	300 mm	19-Jul	<u>Water</u>	X	X	Х	Х	X	X	Χ	X	X	Χ	X	X	X		┝-	Temp:/Cool/Ambient C/	
CoolingLiceAcepack								08,													
Security: Infargure 08										, 5 5 6											
							L					<u> </u>	<u></u>					<u> </u>	<u> </u>	ļ	
	·		L	L	L		ļ	بــــــا	ــــِـــا	L_	Ļ_		لــــا				<u></u>		ـــِــــــــــــــــــــــــــــــــــ	<u> </u>	
	Please tick the box i	<u>observ</u>			_				_	to be	inci	udec	in t	ne ex	ctrac				alys	sis	
Relinquished by	(Company):	Ecoteam		Received by (Com		_		ydre	9							La	ab Use Only				
Print Name:																					
Date & Time:	19/07/2022			Date & Time: 2	ne: 20/07/2 2 1046 Temperature: 08°C Security seal: Intact / Broken / None																
Signature:				Signature:	20						TAT	Req -	SAM	E day	/ 1	/ 2	/ 3	/ 4	/ \$ ⁹	ıς	

Form 302_V004 Issue date: 21 May 2019 Page 1 of 1

Appendix E. Summary of Lab Results compared to WQOs

		Water (Object (WQ	tives	Sample Codes								
Analyte	Unit	Estuary	Fresh	WC	NWC	EC	DD	,	013	014	015	
Analyte	Onit	Lituary	Water	001	002	003	005		Trip	Field	Duplicate	
Total												
Suspended Solids (TSS)	mg/L	N/A	N/A	5	<5	<5	<5		<5	<5	<5	
Total Dissolved Solids (TDS)	mg/L	N/A	N/A	930	520	190	<5		<5	<5	530	
	l.	Ma	jor Cati	ons (di	ssolved) and H	ardnes	s				
Sodium	mg/L	N/A	N/A	100	75	23	20		<0.5	<0.5	74	
Potassium	mg/L	N/A	N/A	5	4	2	1		<0.5	<0.5	4	
Calcium	mg/L	N/A	N/A	100	45	11	3	15	<0.5	<0.5	46	
Magnesium	mg/L	N/A	N/A	33	16	3	4		<0.5	<0.5	17	
Hardness mgCa	CO ₃ /L	N/A	N/A	390	180	40	25		<3	<3	180	
				N	utrients		P					
Ammonia	mg/L	0.015	0.02	0.10	0.21	0.018	0.006		<0.005	<0.005	0.23	
Chlorophyll-a	mg/m³	4	5	7	2	<2	<2		<2	<2	3	
Filterable												
Reactive	mg/L	0.005	0.02	< 0.005	<0.005	0.03	<0.005		<0.005	<0.005	< 0.005	
Phosphorus												
Nitrate	mg/L	N/A	N/A	0.32	0.64	0.070	3.0		0.009	<0.005	0.66	
Oxides of	/I	0.015	0.040	0.0	0.05	0.07	0.0		<0.005	-0.005	0.07	
Nitrogen	mg/L	0.015	0.040	0.3	0.65	0.07	3.0			<0.005	0.67	
Total Nitrogen	mg/L	0.30	0.35	0.9	1.3	0.6	3.6		<0.1	<0.1	1.4	
Total Phosphorus	mg/L	0.030	0.025	0.02	0.03	0.07	0.03		<0.02	<0.02	0.03	
		Me	tals – A	II meta	ls are D	issolve	d Metal	S		,	ve.	
Aluminium	µg/L	N/A	55	10	50	170	20		<10	<10	50	
Arsenic	µg/L	N/A	13	<1	<1	1	<1		<1	<1	<1	
Boron	µg/L	N/A	370	200	100	30	50		<20	<20	100	
Cadmium	µg/L	5.5	0.2	<0.1	<0.1	<0.1	<0.1	35	<0.1	<0.1	<0.1	
Chromium	µg/L	4.4	1.0	<1	<1	<1	<1		<1	<1	<1	
Copper	µg/L	1.3	1.4	<1	<1	<1	<1		<1	<1	<1	
Cobalt	µg/L	1.0	N/A	1	<1	<1	<1		<1	<1	<1	
Lead	µg/L	4.4	3.4	<1	<1	2	<1		<1	<1	5	
Manganese	µg/L	N/A	1,900	430	240	29	28	- 1	<1	<1	240	
Mercury	µg/L	0.4	0.6	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	
Nickel	µg/L	70	11	<1	<1	<1	<1		<1	<1	<1	
Selenium	µg/L	N/A	11	<1	<1	<1	<1		<1	<1	<1	
Silver	µg/L	15	8.0	0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	
Zinc	µg/L	1.4	0.05	3	3	16	3		<1	<1	3	
1 1-1113 13	F3' =								1985	157.7		

Toluene mg/L 0.70 0.95 <1 <1 <1 <1 <1 <1 <1 <			Water (Object (WQ	tives	Sample Codes								
Hydrocarbons	Analyte	Unit	Estuary		57055000	100000000000000000000000000000000000000	575557	100000000		013	014	015	
Toluene mg/L 0.70 0.95 <1 <1 <1 <1 <1 <1 <1 <				Water	001	002	003	005		Trip	Field	Duplicate	
Ethylbenzene mg/L N/A N/A <1 <1 <1 <1 <1 <1 <1 <					Hyd	rocarbo	ns						
Xylene mg/L N/A N/A <1 <1 <1 <1 <1 <1 <1 <	Toluene	mg/L	0.70	0.95	<1	<1	<1	<1		<1	<1	<1	
Naphthalene mg/L N/A 0.55 <1 <1 <1 <1 <1 <1 <1	Ethylbenzene	mg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1	
TRH C ₀ - C ₁₀ mg/L 0.07 0.016 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Xylene	mg/L	N/A	N/A	<1	<1	<1	<1		<1	<1	<1	
TRH C10 - C16	Naphthalene	mg/L	N/A	0.55	<1	<1	<1	<1		<1	<1	<1	
TRH C ₁₆ - C ₃₄ mg/L N/A N/A N/A <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <10	TRH C ₆ - C ₁₀	mg/L	0.07	0.016	<10	<10	<10	<10		<10	<10	<10	
TRH > C ₃₄ - C ₄₀ mg/L N/A N/A N/A <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <	TRH C ₁₀ - C ₁₈	mg/L	N/A	N/A	<50	<50	<50	<50		<50	<50	<50	
TRH Co-Color Easy BTEX (F1) TRH > Co-Co-Color Easy Mg/L N/A N/	TRH C ₁₈ - C ₃₄	mg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100	
BTEX (F1)	TRH >C ₃₄ - C ₄₀	mg/L	N/A	N/A	<100	<100	<100	<100		<100	<100	<100	
Less Naphthalene (F2) N/A	70 1/27	mg/L	N/A	N/A	<10	<10	<10	<10		<10	<10	<10	
4.4'-DDE μg/L N/A N/A <0.01	less Naphthalene	mg/L	N/A	N/A	<50	<50	<50	<50		<50	<50	<50	
4.4'-DDT	1900			Organ	ochlorii	ne Pesti	cides (C	OCP)					
A.4'-DDT	4.4'-DDE	μg/L	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Aldrin μg/L N/A N/A <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0	4.4'-DDT	1000	N/A	0.01	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006	
g-BHC μg/L N/A 0.2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.	Aldrin	S 2002	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Chlordane μg/L N/A 0.08 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <t< td=""><td>g-BHC</td><td>- Commences</td><td>N/A</td><td>0.2</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td><td><0.01</td><td><0.01</td><td><0.01</td></t<>	g-BHC	- Commences	N/A	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Dieldrin μg/L N/A N/A <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		100000	N/A	0.08	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Endosulfan μg/L 0.01 0.2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	Dieldrin	38	N/A	N/A	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Endrin μg/L 0.02 0.008 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <th< td=""><td>Endosulfan</td><td>The second second</td><td>0.01</td><td>0.2</td><td><0.01</td><td><0.01</td><td><0.01</td><td><0.01</td><td></td><td><0.01</td><td><0.01</td><td><0.01</td></th<>	Endosulfan	The second second	0.01	0.2	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Heptachlor μg/L N/A 0.09 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <		THE CO.			<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Toxaphene μg/L N/A 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	Heptachlor		N/A	0.09	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Organophosphorus Pesticides (OPP) Azinphos- methyl μg/L N/A 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	and the second second	1945	N/A	0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	
Azinphosmethyl μg/L N/A 0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	10 h		C	rganor	hospho	orus Pes	sticides	(OPP)				3	
Chlorpyriphos μg/L 0.009 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	10	μg/L		0.70	1,550	2000000	n more man			<0.02	<0.02	<0.02	
Demeton-S μg/L N/A N/A <5 <5 <5 <5 <5 Diazinon μg/L N/A 0.01 <0.01	NUCLOS COMPANY	ua/l	0.009	0.01	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	<0.01	
Diazinon µg/L N/A 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.50 0	10,200			2012							<5	
	NEW ROOMS OF THE WARREN		The state of the s		8330	200	1000 C	2003		TOTAL STATE OF THE PARTY OF THE	55.25	<0.01	
0.10 0.10 0.10		119950										<0.15	
Fenitrothion µg/L N/A 0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	- 2	7 30 30 30 and					Ž	S			10.000	<0.13	
Malathion μg/L N/A 0.05 <0.05 <0.05 <0.05 <0.05 <0.05			. AND PARKET	OVERATIVE.	N. N. N. P.	1000000	DOORS.	National Contract of the Contr		685555	67636350	<0.05	

Appendix F. Full Laboratory Results

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 300886

Client Details	
Client	Ecoteam
Attention	
Address	13 Ewing Street, Lismore, NSW, 2480

Sample Details	
Your Reference	SMC009.37 - Tweed Valley Hospital Project
Number of Samples	7 Water
Date samples received	20/07/2022
Date completed instructions received	20/07/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	28/07/2022						
Date of Issue	28/07/2022						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISC	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

, Inorganics Supervisor , Group Technical Manager

Coming Chamint

, Senior Chemist

, Organic Instruments Team Leader

Authorised By

, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water						
Our Reference		300886-1	300886-2	300886-3	300886-4	300886-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	<u></u>	22/07/2022	22/07/2022	22/07/2022	22/07/2022	22/07/2022
Date analysed	128	23/07/2022	23/07/2022	23/07/2022	23/07/2022	23/07/2022
TRH C ₈ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C ₈ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₈ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	103	97	97	95	96
Surrogate toluene-d8	%	98	97	98	97	96
Surrogate 4-BFB	%	100	99	102	101	98

Our Reference		300886-6	300886-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	125	22/07/2022	22/07/2022
Date analysed	120	23/07/2022	23/07/2022
TRH C ₈ - C ₉	μg/L	<10	<10
TRH C ₈ - C ₁₀	μg/L	<10	<10
TRH C ₈ - C ₁₀ less BTEX (F1)	μg/L	<10	<10
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	101	96
Surrogate toluene-d8	%	98	98
Surrogate 4-BFB	%	99	97

svTRH (C10-C40) in Water	4	3		D.		
Our Reference		300886-1	300886-2	300886-3	300886-4	300886-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	121	26/07/2022	26/07/2022	26/07/2022	26/07/2022	26/07/2022
Date analysed	2	27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₈	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	104	98	105	97	85

Our Reference		300886-6	300886-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	650	26/07/2022	26/07/2022
Date analysed	-	27/07/2022	27/07/2022
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100
TRH C ₂₉ - C ₃₈	μg/L	<100	<100
TRH >C ₁₀ - C ₁₈	μg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50
TRH >C16 - C34	μg/L	<100	<100
TRH >C34 - C40	μg/L	<100	<100
Surrogate o-Terphenyl	%	83	89

OCPs in Water - Low Level		000000	0000000	000000	0000004	000000
Our Reference		300886-1	300886-2	300886-3	300886-4	300886-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	0,20	26/07/2022	26/07/2022	26/07/2022	26/07/2022	26/07/202
Date analysed	320	26/07/2022	26/07/2022	26/07/2022	26/07/2022	26/07/202
alpha-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
HCB	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
oeta-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
delta-BHC	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Aldrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan I	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDE	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Dieldrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan II	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDD	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Endrin Aldehyde	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
pp-DDT	μg/L	<0.006	<0.006	<0.006	<0.006	<0.006
Endosulfan Sulphate	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Methoxychlor	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Surrogate TCMX	%	90	91	90	86	89

OCPs in Water - Low Level		2000000	200000
Our Reference		300886-6	300886-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	25.0	26/07/2022	26/07/2022
Date analysed	(* 2	26/07/2022	26/07/2022
alpha-BHC	μg/L	<0.01	<0.01
HCB	μg/L	<0.01	<0.01
beta-BHC	μg/L	<0.01	<0.01
gamma-BHC	μg/L	<0.01	<0.01
Heptachlor	μg/L	<0.01	<0.01
delta-BHC	μg/L	<0.01	<0.01
Aldrin	μg/L	<0.01	<0.01
Heptachlor Epoxide	μg/L	<0.01	<0.01
gamma-Chlordane	μg/L	<0.01	<0.01
alpha-Chlordane	μg/L	<0.01	<0.01
Endosulfan I	μg/L	<0.01	<0.01
pp-DDE	μg/L	<0.01	<0.01
Dieldrin	μg/L	<0.01	<0.01
Endrin	μg/L	<0.01	<0.01
Endosulfan II	μg/L	<0.01	<0.01
pp-DDD	μg/L	<0.01	<0.01
Endrin Aldehyde	μg/L	<0.01	<0.01
pp-DDT	μg/L	<0.006	<0.006
Endosulfan Sulphate	μg/L	<0.01	<0.01
Methoxychlor	μg/L	<0.01	<0.01
Surrogate TCMX	%	89	82

OP in water LL ANZECCF/ADWG Our Reference		300886-1	300886-2	300886-3	300886-4	300886-5
	LIMITO	0.7.7.7.7.7.4.4	S2462.0000.00000		100 C	
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date extracted	121	26/07/2022	26/07/2022	26/07/2022	26/07/2022	26/07/2022
Date analysed	224	26/07/2022	26/07/2022	26/07/2022	26/07/2022	26/07/2022
Dichlorovos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.15	<0.15	<0.15	<0.15	<0.15
Diazinon	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl Parathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Chlorpyriphos	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
^o arathion	μg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Surrogate TCMX	%	90	91	90	86	89

OP in water LL ANZECCF/ADWG			
Our Reference		300886-6	300886-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date extracted	1991	26/07/2022	26/07/2022
Date analysed	-	26/07/2022	26/07/2022
Dichlorovos	μg/L	<0.2	<0.2
Dimethoate	μg/L	<0.15	<0.15
Diazinon	μg/L	<0.01	<0.01
Chlorpyriphos-methyl	μg/L	<0.2	<0.2
Methyl Parathion	μg/L	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2
Malathion	μg/L	<0.05	<0.05
Chlorpyriphos	μg/L	<0.01	<0.01
Parathion	μg/L	<0.01	<0.01
Bromophos ethyl	μg/L	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.02	<0.02
Surrogate TCMX	%	89	82

Miscellaneous Organics - water	à de la companya de	3		Ti.		
Our Reference		300886-1	300886-2	300886-3	300886-4	300886-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	323	26/07/2022	26/07/2022	26/07/2022	26/07/2022	26/07/2022
Date analysed	2	27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Toxaphene*	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Demeton-O	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Demeton-S	μg/L	<5	<5	<5	<5	<5
Surrogate p-Terphenyl-d ₁₄	%	100	99	97	90	93

Miscellaneous Organics - water			
Our Reference		300886-6	300886-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	r = (26/07/2022	26/07/2022
Date analysed	(2)	27/07/2022	27/07/2022
Toxaphene*	μg/L	<0.2	<0.2
Demeton-O	μg/L	<0.2	<0.2
Demeton-S	μg/L	<5	<5
Surrogate p-Terphenyl-d ₁₄	%	84	83

HM in water - dissolved		3	<i>-11</i> .	7.		
Our Reference		300886-1	300886-2	300886-3	300886-4	300886-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	120	25/07/2022	25/07/2022	25/07/2022	25/07/2022	25/07/2022
Date analysed	<i>₩</i>	26/07/2022	26/07/2022	26/07/2022	26/07/2022	26/07/2022
Aluminium-Dissolved	μg/L	10	50	170	20	<10
Arsenic-Dissolved	μg/L	<1	<1	1	<1	<1
Boron-Dissolved	μg/L	200	100	30	50	<20
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Cobalt-Dissolved	μg/L	1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	2	<1	<1
Manganese-Dissolved	μg/L	430	240	29	28	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Silver-Dissolved	μg/L	0.05	<0.05	<0.05	<0.05	0.3
Zinc-Dissolved	μg/L	3	3	16	3	<1

HM in water - dissolved			
Our Reference		300886-6	300886-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	1=1	25/07/2022	25/07/2022
Date analysed		26/07/2022	26/07/2022
Aluminium-Dissolved	μg/L	<10	50
Arsenic-Dissolved	μg/L	<1	<1
Boron-Dissolved	μg/L	<20	100
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	μg/L	<1	<1
Cobalt-Dissolved	μg/L	<1	<1
Lead-Dissolved	μg/L	<1	5
Manganese-Dissolved	μg/L	<1	240
Mercury-Dissolved	μg/L	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1
Selenium-Dissolved	μg/L	<1	<1
Silver-Dissolved	μg/L	0.3	<0.05
Zinc-Dissolved	μg/L	<1	3

Metals in Waters - Acid extractab	le	3	<i>-22</i>	75	× 2	
Our Reference		300886-1	300886-2	300886-3	300886-4	300886-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	X-1	25/07/2022	25/07/2022	25/07/2022	25/07/2022	25/07/2022
Date analysed	424	25/07/2022	25/07/2022	25/07/2022	25/07/2022	25/07/2022
Phosphorus - Total	mg/L	0.02	0.03	0.07	0.03	<0.02

Our Reference		300886-6	300886-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	650	25/07/2022	25/07/2022
Date analysed	:##	25/07/2022	25/07/2022
Phosphorus - Total	mg/L	0.03	0.03

Cations in water Dissolved	2	3		E-		
Our Reference		300886-1	300886-2	300886-3	300886-4	300886-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date digested	320	27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Date analysed	42	27/07/2022	27/07/2022	27/07/2022	27/07/2022	27/07/2022
Sodium - Dissolved	mg/L	100	75	23	20	<0.5
Potassium - Dissolved	mg/L	5	4	2	1	<0.5
Calcium - Dissolved	mg/L	100	45	11	3	<0.5
Magnesium - Dissolved	mg/L	33	16	3	4	<0.5
Hardness	mgCaCO3/L	390	180	40	25	<3

Cations in water Dissolved			
Our Reference		300886-6	300886-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date digested	329	27/07/2022	27/07/2022
Date analysed	<u> </u>	27/07/2022	27/07/2022
Sodium - Dissolved	mg/L	<0.5	74
Potassium - Dissolved	mg/L	<0.5	4
Calcium - Dissolved	mg/L	<0.5	46
Magnesium - Dissolved	mg/L	<0.5	17
Hardness	mgCaCO3/L	<3	180

Miscellaneous Inorganics	8	3		E.		
Our Reference		300886-1	300886-2	300886-3	300886-4	300886-5
Your Reference	UNITS	001-USW	002 - USNW	003 - DSE	005 - Dam Drain	013
Depth		300	150	300	150	300
Type of sample		Water	Water	Water	Water	Water
Date prepared	349	20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Date analysed		20/07/2022	20/07/2022	20/07/2022	20/07/2022	20/07/2022
Total Suspended Solids	mg/L	5	<5	<5	<5	<5
Total Dissolved Solids (grav)	mg/L	930	520	190	<5	<5
Ammonia as N in water	mg/L	0.10	0.21	0.018	0.006	< 0.005
Chlorophyll a	mg/m³	7	2	<2	<2	<2
Phosphate as P in water	mg/L	<0.005	<0.005	0.03	<0.005	< 0.005
Nitrate as N in water	mg/L	0.32	0.64	0.070	3.0	<0.005
NOx as N in water	mg/L	0.3	0.65	0.07	3.0	<0.005
Total Nitrogen in water	mg/L	0.9	1.3	0.6	3.6	<0.1

Our Reference		300886-6	300886-7
Your Reference	UNITS	014	015
Depth		300	300
Type of sample		Water	Water
Date prepared	650	20/07/2022	20/07/2022
Date analysed		20/07/2022	20/07/2022
Total Suspended Solids	mg/L	<5	<5
Total Dissolved Solids (grav)	mg/L	<5	530
Ammonia as N in water	mg/L	<0.005	0.23
Chlorophyll a	mg/m³	<2	3
Phosphate as P in water	mg/L	<0.005	<0.005
Nitrate as N in water	mg/L	<0.005	0.66
NOx as N in water	mg/L	<0.005	0.67
Total Nitrogen in water	mg/L	<0.1	1.4

Method ID	Methodology Summary
Inorg-018	Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
INORG-119	Chlorophyll A based on APHA 10200 H latest edition.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTI	ROL: vTRH(C6-C10)/B	TEXN in Water			Du		Spike Rec	очегу %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	(- 2)			22/07/2022	1	22/07/2022	25/07/2022		22/07/2022	
Date analysed	()			23/07/2022	1	23/07/2022	26/07/2022		23/07/2022	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	105	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	105	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	102	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	103	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	102	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	103	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	103	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0	[NIT]	
Surrogate Dibromofluoromethane	%		Org-023	103	1	103	97	6	100	
Surrogate toluene-d8	%		Org-023	96	1	98	97	1	102	
Surrogate 4-BFB	%		Org-023	102	1	100	97	3	100	

QUALITY	CONTROL: svT	RH (C10-C	40) in Water	10		Du	plicate		Spike Reco	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	1975			26/07/2022	[NT]		[NT]	[NT]	26/07/2022	
Date analysed	-			27/07/2022	[NT]		[NT]	[NT]	27/07/2022	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	[NT]		[NT]	[NII]	97	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	[NT]		INII	[NT]	99	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	INT		[NT]	[NT]	86	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	(NT)		(NT)	(NT)	97	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	[NT]		[NT]	[NT]	99	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	[MJ]		[NT]	[NT]	86	
Surrogate o-Terphenyl	%		Org-020	91	[NT]		[NT]	[NT]	112	

QUALITY	CONTROL: OCF	s in Wate	r - Low Level			Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]	
Date extracted	958			26/07/2022	[NT]		[NT]	[NT]	26/07/2022		
Date analysed	(-)			26/07/2022	(NT)		INTI	INT	26/07/2022		
alpha-BHC	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NI]	84		
нсв	μg/L	0.01	Org-022/025	<0.01	[NT]		INII	[NT]	[NT]		
beta-BHC	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	85		
gamma-BHC	μg/L	0.01	Org-022/025	<0.01	(NT)		[NT]	[NT]	(NT)		
Heptachlor	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	83		
delta-BHC	µg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
Aldrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	87		
Heptachlor Epoxide	μg/L	0.01	Org-022/025	<0.01	[NET]		INTI	INT	80		
gamma-Chlordane	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
alpha-Chlordane	μg/L	0.01	Org-022/025	<0.01	[NT]		[MI]	INII	[MI]		
Endosulfan I	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	[NT]		
pp-DDE	μg/L	0.01	Org-022/025	<0.01	(NT)		[NIT]	[NIT]	84		
Dieldrin	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	88		
Endrin	μg/L	0.01	Org-022/025	<0.01	(NT)		[M1]	[NT]	76		
Endosulfan II	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NI]	[NT]		
pp-DDD	μg/L	0.01	Org-022/025	<0.01	[NT]		INII	[NT]	84		
Endrin Aldehyde	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NI]	[NT]		
pp-DDT	μg/L	0.006	Org-022	<0.006	(NT)		[N7)	[N3]	[N7]		
Endosulfan Sulphate	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	78		
Methoxychlor	μg/L	0.01	Org-022/025	<0.01	(NT)		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	97	[NT]		[NT]	[NT]	93		

QUALITY CON	TROL: OP in v	vater LL Al	NZECCF/ADWG			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	950			26/07/2022	[NT]		[NT]	[NT]	26/07/2022	
Date analysed	(-)			26/07/2022	[NT]		[NT]	INT	26/07/2022	
Dichlorovos	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NI]	101	
Dime hoate	μg/L	0.15	Org-022/025	<0.15	[NT]		INII	[NT]	[NT]	
Diazinon	μg/L	0.01	Org-022/025	<0.01	INTI		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	μg/L	0.2	Org-022/025	<0.2	(NT)		[NT]	[NT]	(NT)	
Methyl Para hion	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ronnel	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	75	
Fenitrothion	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	83	
Malathion	μg/L	0.05	Org-022/025	<0.05	[NT]		[NIT]	[NI]	112	
Chlorpyriphos	μg/L	0.01	Org-022/025	<0.01	[NT]		[NT]	[NT]	88	
Parathion	μg/L	0.01	Org-022/025	<0.01	[NII]		[NII]	[NII]	80	
Bromophos ethyl	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ethion	μg/L	0.2	Org-022/025	<0.2	INT)		(NT)	[NII]	76	
Azinphos-methyl (Guthion)	μg/L	0.02	Org-022/025	<0.02	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	97	INTI		INT	INT	93	

QUALITY COI	NTROL: Miscel	laneous C	rganics - water			Du	3107	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	9 2 4			26/07/2022	[NT]		[NT]	[NT]	26/07/2022	
Date analysed	-			27/07/2022	(NT)		[NT]	INI	27/07/2022	
Toxaphene*	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NI]	[NT]	
Demeton-O	μg/L	0.2	Org-022/025	<0.2	[NT]		INII	INII	[NT]	
Demeton-S	μg/L	5	Org-022/025	<5	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d ₁₄	%		Org-022/025	96	(NT)		[NT]	[NT]	91	

Envirolab Reference: 300886
Revision No: R00
Page | 19 of 26

QUALIT	Y CONTROL: HI	M in water	dissolved			Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	300886-2	
Date prepared	953			25/07/2022	1	25/07/2022	25/07/2022		25/07/2022	25/07/2022	
Date analysed	(=)			26/07/2022	1	26/07/2022	26/07/2022		26/07/2022	26/07/2022	
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	10	[NT]		115	[NT]	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		97	[NT]	
Boron-Dissolved	μg/L	20	Metals-022	<20	1	200	[NT]		114	[NT]	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	[8(7)		101	[N1]	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		98	[NT]	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		96	(NT)	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	1	[NT]		96	[NT]	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		99	[NT]	
Manganese-Dissolved	μg/L	1	Metals-022	<1	1	430	[NT]		101	[NT]	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0 05	0	99	102	
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	[NT]		96	INT	
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	(NIT)		97	TNTI	
Silver-Dissolved	μg/L	0.05	Metals-022	<0.05	1	0.05	[NT]		92	[NT]	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	3	INT		98	INT	

QUALITY CONTROL: Metals in Waters - Acid extractable						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	300886-2
Date prepared	17 2 .1			25/07/2022	1	25/07/2022	25/07/2022		25/07/2022	25/07/2022
Date analysed	(-)			25/07/2022	1	25/07/2022	25/07/2022		25/07/2022	25/07/2022
Phosphorus - Total	mg/L	0.02	Metals-020	<0.02	1	0.02	0.02	0	109	103

Envirolab Reference: 300886
Revision No: R00
Page | 21 of 26

QUALITY CONTROL: Cations in water Dissolved							Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	300886-2		
Date digested	930			27/07/2022	1	27/07/2022	27/07/2022		27/07/2022	27/07/2022		
Date analysed	(5)			27/07/2022	1	27/07/2022	27/07/2022		27/07/2022	27/07/2022		
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	100	100	0	99	#		
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	5	5	0	90	80		
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	100	99	1	95	79		
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	33	32	3	99	89		
Hardness	mgCaCO 3/L	3	Metals-020	INT	1	390	380	3	[NT]	[NT]		

QUALITY C		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	300886-2
Date prepared	1751			20/07/2022	1	20/07/2022	20/07/2022		20/07/2022	20/07/2022
Date analysed	-			20/07/2022	1	20/07/2022	20/07/2022		20/07/2022	20/07/2022
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	5	[N1]		118	[NT]
Total Dissolved Solids (grav)	mg/L	5	Inorg-018	<5	1	930	[NT]		120	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.10	0.10	0	96	90
Chlorophyll a	mg/m³	2	INORG-119	<2	1	7	[8(1)		81	INT
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	<0.005	0	106	96
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.32	0.32	0	98	102
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.3	0.3	0	98	102
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.9	0.9	0	95	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Cations in water Dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Miscellaneous Organics - water - The recovery of LCS and matrix spike cannot be reported due to the fact they are not in the list of analytes requested. However, the non-reported analytes within the LCS and matrix spike had acceptable recoveries.

Envirolab Reference: 300886 Page | 26 of 26 R00

Revision No: